Download presentation
Presentation is loading. Please wait.
1
6-6 Analytic Geometry
2
Coordinate Geometry uses actual points.
Analytic Geometry uses variables; zero is the only acceptable number. You use definitions and formulas (midpoint, distance, and slope). (0, 0) x y (a, 0) (0, b) Right Triangle Place a geometric figure in a convenient position on the coordinate plane (usually placing a vertex on the origin). Scalene Triangle (0, 0) x y (b, c) (a, 0) (0, 0) x y (a, b) (2a, 0) Isosceles Triangle
3
Analytic Proofs Place a geometric figure in a convenient position on the coordinate plane (usually placing a vertex on the origin). (0, 0) x y (0, 0) x y Parallelogram Rectangle using midpoints (b, c) (a+b, c) (0, 2b) (2a, 2b) (a, 0) (2a, 0) (0, 0) x y (0, 0) x y Square Rectangle w/out midpoints (0, a) (0, b) (a, a) (a, b) (a, 0) (a, 0)
4
Coordinate Proof Example
Given: Trapezoid PQRS Find PQ and SR and verify that PQRS is an isosceles trapezoid Prove that the diagonals are congruent Isosceles Trapezoid Trapezoid using midpoints (0, 0) x y y (-b, c) (b, c) Q R (2b, 2c) (2d, 2c) P S (2a, 0) (-a, 0) (a, 0) x
5
Trapezoid Midsegment Theorem
y The midsegment of a trapezoid is parallel to the bases The length of the midsegment of a trapezoid is half the sum of the lengths of the bases. PROVE IT! (2b, 2c) (2d, 2c) x (0, 0) (2a, 0)
6
Analytic Proofs E-Block B1 #6* Marissa Hayley #8 ChristianA JB #9 JoshC Sliker #1 Sam G Bobby #2/3 Kara Alicia #4 Abby Aleah #5* Deanna Kasi *Ask for hint on placement #6* Evan Alex #8 Jess Floriana #9 Annalee Sam T. #1 Carolyn Gabby #2/3 ChristianP David #4 Jess Kayleigh #5* Alek Nathaniel JoshS Zoe #6* Tyler John
7
Analytic Proofs E-Block B4 #6* Nate Mallorie #8 Boo Kasey #9 Ben K Austin #1 Sam G Bobby #2/3 Kara Alicia #4 Abby Aleah #5* Deanna Kasi *Ask for hint on placement #6* Evan Alex #8 Jess Floriana #9 Annalee Sam T. #1 Kim Ben T. #2/3 Conner Connor #4 Richard Anna #5* Alan David #5* Rachel Natalie #6* Kevin Jack
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.