Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 18 Electrochemistry Lesson 2

Similar presentations


Presentation on theme: "Chapter 18 Electrochemistry Lesson 2"— Presentation transcript:

1 Chapter 18 Electrochemistry Lesson 2
2007, Prentice Hall

2 Electrochemistry 18.1 Balancing Oxidation–Reduction Reactions
Galvanic Cells Standard Reduction Potentials 18.4 Cell Potential, Electrical Work, and Free Energy 18.5 Dependence of Cell Potential on Concentration 18.6 Batteries 18.7 Corrosion 18.8 Electrolysis 18.9 Commercial Electrolytic Processes

3 What about non-standard conditions?
Free Energy Under standard conditions, G = −nFE What about non-standard conditions?

4 Nernst Equation Remember that G = G + RT ln Q This means
−nFE = −nFE + RT ln Q

5 Nernst Equation Dividing both sides by −nF, we get the Nernst equation: E = E − RT nF ln Q or, using base-10 logarithms, E = E − 2.303 RT nF log Q

6 Nernst Equation At room temperature (298 K), 2.303 RT F = 0.0592 V
Thus the equation becomes E = E − V n log Q

7 Nonstandard Conditions - the Nernst Equation
DG = DG° + RT ln Q E = E° - (0.0592/n) log Q at 25°C when Q = K, E = 0 use to calculate E when concentrations not 1 M Tro, Chemistry: A Molecular Approach

8 Concentration Cells Ecell 
Notice that the Nernst equation implies that a cell could be created that has the same substance at both electrodes. For such a cell, would be 0, but Q would not. Ecell Therefore, as long as the concentrations are different, E will not be 0.

9 Example 18.6- Calculate DG° for the reaction I2(s) + 2 Br−(aq) → Br2(l) + 2 I−(aq)
Given: Find: I2(s) + 2 Br−(aq) → Br2(l) + 2 I−(aq) DG°, (J) Concept Plan: Relationships: E°ox, E°red E°cell DG° Solve: ox: 2 Br−(aq) → Br2(l) + 2 e− E° = −1.09 v red: I2(l) + 2 e− → 2 I−(aq) E° = v tot: I2(l) + 2Br−(aq) → 2I−(aq) + Br2(l) E° = −0.55 v Answer: since DG° is +, the reaction is not spontaneous in the forward direction under standard conditions Tro, Chemistry: A Molecular Approach

10 Example 18.7- Calculate K at 25°C for the reaction Cu(s) + 2 H+(aq) → H2(g) + Cu2+(aq)
Given: Find: Cu(s) + 2 H+(aq) → H2(g) + Cu2+(aq) K Concept Plan: Relationships: E°ox, E°red E°cell K Solve: ox: Cu(s) → Cu2+(aq) + 2 e− E° = −0.34 v red: 2 H+(aq) + 2 e− → H2(aq) E° = v tot: Cu(s) + 2H+(aq) → Cu2+(aq) + H2(g) E° = −0.34 v Answer: since K < 1, the position of equilibrium lies far to the left under standard conditions Tro, Chemistry: A Molecular Approach

11 E at Nonstandard Conditions
Tro, Chemistry: A Molecular Approach

12 Example Calculate Ecell at 25°C for the reaction 3 Cu(s) + 2 MnO4−(aq) + 8 H+(aq) → 2 MnO2(s) + Cu2+(aq) + 4 H2O(l) Given: Find: 3 Cu(s) + 2 MnO4−(aq) + 8 H+(aq) → 2 MnO2(s) + Cu2+(aq) + 4 H2O(l) [Cu2+] = M, [MnO4−] = 2.0 M, [H+] = 1.0 M Ecell Concept Plan: Relationships: E°ox, E°red E°cell Ecell Solve: ox: Cu(s) → Cu2+(aq) + 2 e− }x3 E° = −0.34 v red: MnO4−(aq) + 4 H+(aq) + 3 e− → MnO2(s) + 2 H2O(l) }x2 E° = v tot: 3 Cu(s) + 2 MnO4−(aq) + 8 H+(aq) → 2 MnO2(s) + 3Cu2+(aq) + 4 H2O(l)) E° = v Check: units are correct, Ecell > E°cell as expected because [MnO4−] > 1 M and [Cu2+] < 1 M Tro, Chemistry: A Molecular Approach

13 Concentration Cells it is possible to get a spontaneous reaction when the oxidation and reduction reactions are the same, as long as the electrolyte concentrations are different the difference in energy is due to the entropic difference in the solutions the more concentrated solution has lower entropy than the less concentrated electrons will flow from the electrode in the less concentrated solution to the electrode in the more concentrated solution oxidation of the electrode in the less concentrated solution will increase the ion concentration in the solution – the less concentrated solution has the anode reduction of the solution ions at the electrode in the more concentrated solution reduces the ion concentration – the more concentrated solution has the cathode Tro, Chemistry: A Molecular Approach

14 Concentration Cell when the cell concentrations are different, electrons flow from the side with the less concentrated solution (anode) to the side with the more concentrated solution (cathode) when the cell concentrations are equal there is no difference in energy between the half-cells and no electrons flow Cu(s) Cu2+(aq) (0.010 M)  Cu2+(aq) (2.0 M) Cu(s) Tro, Chemistry: A Molecular Approach

15 LeClanche’ Acidic Dry Cell
electrolyte in paste form ZnCl2 + NH4Cl or MgBr2 anode = Zn (or Mg) Zn(s) ® Zn2+(aq) + 2 e- cathode = graphite rod MnO2 is reduced 2 MnO2(s) + 2 NH4+(aq) + 2 H2O(l) + 2 e- ® 2 NH4OH(aq) + 2 Mn(O)OH(s) cell voltage = 1.5 v expensive, nonrechargeable, heavy, easily corroded Tro, Chemistry: A Molecular Approach

16 Alkaline Dry Cell same basic cell as acidic dry cell, except electrolyte is alkaline KOH paste anode = Zn (or Mg) Zn(s) ® Zn2+(aq) + 2 e- cathode = brass rod MnO2 is reduced 2 MnO2(s) + 2 NH4+(aq) + 2 H2O(l) + 2 e- ® 2 NH4OH(aq) + 2 Mn(O)OH(s) cell voltage = 1.54 v longer shelf life than acidic dry cells and rechargeable, little corrosion of zinc Tro, Chemistry: A Molecular Approach

17 PbO2(s) + 4 H+(aq) + SO42-(aq) + 2 e-
Lead Storage Battery 6 cells in series electrolyte = 30% H2SO4 anode = Pb Pb(s) + SO42-(aq) ® PbSO4(s) + 2 e- cathode = Pb coated with PbO2 PbO2 is reduced PbO2(s) + 4 H+(aq) + SO42-(aq) + 2 e- ® PbSO4(s) + 2 H2O(l) cell voltage = 2.09 v rechargeable, heavy Tro, Chemistry: A Molecular Approach

18 NiCad Battery electrolyte is concentrated KOH solution anode = Cd
Cd(s) + 2 OH-1(aq) ® Cd(OH)2(s) + 2 e-1 E0 = 0.81 v cathode = Ni coated with NiO2 NiO2 is reduced NiO2(s) + 2 H2O(l) + 2 e-1 ® Ni(OH)2(s) + 2OH-1 E0 = 0.49 v cell voltage = 1.30 v rechargeable, long life, light – however recharging incorrectly can lead to battery breakdown Tro, Chemistry: A Molecular Approach

19 Ni-MH Battery electrolyte is concentrated KOH solution
anode = metal alloy with dissolved hydrogen oxidation of H from H0 to H+1 M∙H(s) + OH-1(aq) ® M(s) + H2O(l) + e-1 E° = 0.89 v cathode = Ni coated with NiO2 NiO2 is reduced NiO2(s) + 2 H2O(l) + 2 e-1 ® Ni(OH)2(s) + 2OH-1 E0 = 0.49 v cell voltage = 1.30 v rechargeable, long life, light, more environmentally friendly than NiCad, greater energy density than NiCad Tro, Chemistry: A Molecular Approach

20 Lithium Ion Battery electrolyte is concentrated KOH solution
anode = graphite impregnated with Li ions cathode = Li - transition metal oxide reduction of transition metal work on Li ion migration from anode to cathode causing a corresponding migration of electrons from anode to cathode rechargeable, long life, very light, more environmentally friendly, greater energy density Tro, Chemistry: A Molecular Approach

21 Fuel Cells like batteries in which reactants are constantly being added so it never runs down! Anode and Cathode both Pt coated metal Electrolyte is OH– solution Anode Reaction: 2 H2 + 4 OH– → 4 H2O(l) + 4 e- Cathode Reaction: O2 + 4 H2O + 4 e- → 4 OH– Tro, Chemistry: A Molecular Approach

22 Electrolytic Cell uses electrical energy to overcome the energy barrier and cause a non-spontaneous reaction must be DC source the + terminal of the battery = anode the - terminal of the battery = cathode cations attracted to the cathode, anions to the anode cations pick up electrons from the cathode and are reduced, anions release electrons to the anode and are oxidized some electrolysis reactions require more voltage than Etot, called the overvoltage Tro, Chemistry: A Molecular Approach

23 Tro, Chemistry: A Molecular Approach

24 electroplating In electroplating, the work piece is the cathode.
Cations are reduced at cathode and plate to the surface of the work piece. The anode is made of the plate metal. The anode oxidizes and replaces the metal cations in the solution Tro, Chemistry: A Molecular Approach

25 Electrochemical Cells
in all electrochemical cells, oxidation occurs at the anode, reduction occurs at the cathode in voltaic cells, anode is the source of electrons and has a (−) charge cathode draws electrons and has a (+) charge in electrolytic cells electrons are drawn off the anode, so it must have a place to release the electrons, the + terminal of the battery electrons are forced toward the anode, so it must have a source of electrons, the − terminal of the battery Tro, Chemistry: A Molecular Approach

26 Electrolysis electrolysis is the process of using electricity to break a compound apart electrolysis is done in an electrolytic cell electrolytic cells can be used to separate elements from their compounds generate H2 from water for fuel cells recover metals from their ores Tro, Chemistry: A Molecular Approach

27 Electrolysis of Water Tro, Chemistry: A Molecular Approach

28 Electrolysis of Pure Compounds
must be in molten (liquid) state electrodes normally graphite cations are reduced at the cathode to metal element anions oxidized at anode to nonmetal element Tro, Chemistry: A Molecular Approach

29 Electrolysis of NaCl(l)
Tro, Chemistry: A Molecular Approach

30 Mixtures of Ions when more than one cation is present, the cation that is easiest to reduce will be reduced first at the cathode least negative or most positive E°red when more than one anion is present, the anion that is easiest to oxidize will be oxidized first at the anode least negative or most positive E°ox Tro, Chemistry: A Molecular Approach

31 Electrolysis of NaI(aq) with Inert Electrodes
possible oxidations 2 I-1 ® I2 + 2 e-1 E° = −0.54 v 2 H2O ® O2 + 4e-1 + 4H+1 E° = −0.82 v possible oxidations 2 I-1 ® I2 + 2 e-1 E° = −0.54 v 2 H2O ® O2 + 4e-1 + 4H+1 E° = −0.82 v possible reductions Na+1 + 1e-1 ® Na0 E° = −2.71 v 2 H2O + 2 e-1 ® H2 + 2 OH-1 E° = −0.41 v possible reductions Na+1 + 1e-1 ® Na0 E° = −2.71 v 2 H2O + 2 e-1 ® H2 + 2 OH-1 E° = −0.41 v overall reaction 2 I−(aq) + 2 H2O(l) ® I2(aq) + H2(g) + 2 OH-1(aq) Tro, Chemistry: A Molecular Approach

32 Faraday’s Law the amount of metal deposited during electrolysis is directly proportional to the charge on the cation, the current, and the length of time the cell runs charge that flows through the cell = current x time Tro, Chemistry: A Molecular Approach

33 Example Calculate the mass of Au that can be plated in 25 min using 5.5 A for the half-reaction Au3+(aq) + 3 e− → Au(s) Given: Find: 3 mol e− : 1 mol Au, current = 5.5 amps, time = 25 min mass Au, g Concept Plan: Relationships: t(s), amp charge (C) mol e− mol Au g Au Solve: Check: units are correct, answer is reasonable since 10 A running for 1 hr ~ 1/3 mol e− Tro, Chemistry: A Molecular Approach

34 Corrosion corrosion is the spontaneous oxidation of a metal by chemicals in the environment since many materials we use are active metals, corrosion can be a very big problem Tro, Chemistry: A Molecular Approach

35 Rusting rust is hydrated iron(III) oxide moisture must be present
water is a reactant required for flow between cathode and anode electrolytes promote rusting enhances current flow acids promote rusting lower pH = lower E°red Tro, Chemistry: A Molecular Approach

36 Tro, Chemistry: A Molecular Approach

37 Preventing Corrosion one way to reduce or slow corrosion is to coat the metal surface to keep it from contacting corrosive chemicals in the environment paint some metals, like Al, form an oxide that strongly attaches to the metal surface, preventing the rest from corroding another method to protect one metal is to attach it to a more reactive metal that is cheap sacrificial electrode galvanized nails Tro, Chemistry: A Molecular Approach

38 Sacrificial Anode Tro, Chemistry: A Molecular Approach


Download ppt "Chapter 18 Electrochemistry Lesson 2"

Similar presentations


Ads by Google