Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vehicle Recognition System

Similar presentations


Presentation on theme: "Vehicle Recognition System"— Presentation transcript:

1 Vehicle Recognition System
Gerald Dalley Signal Analysis and Machine Perception Laboratory The Ohio State University 09 May 2002

2 Recognition Engine Steps
Acquire range images Determine regions of interest (see Kanu) Local surface estimation Surface reconstruction Affinity measure Spectral Clustering: Normalized cuts Graph matching

3 Range Image Acquisition
Model building Testing

4 Local Surface Estimation
What: (1) Estimate the local surface characteristics (2) at given locations Why: (1) Vehicles are made up of large low-order surfaces (1) Look for groups of points that imply such surfaces (2) Our sets of range images are BIG (tank from 10 views has over 220,000 range points) How…

5 Local Surface Estimation: Point Set Selection
In the region of interest… Collect range image points into cubic voxel bins (32x32x32mm right now) Discard bins that have: Too few points Points that do not represent a biquadratic surface well Retain only the centroids of the bins and their surface fits

6 Local Surface Estimation: Biquadratic Patches
PCA  local coordinate system Least squares biquadratic fit: f(u,v) = a1u2 + a2uv + a3v2 + a4u + a5v + a6 w u

7 Surface Reconstruction
Voxel centroids Mesh cocone See last quarter’s presentation for details on cocone

8 Affinity Quasi-Definition: Affinity  probability that two mesh points were sampled from the same low-order surface Why: Can use grouping algorithms to segment the mesh (to make recognition easier) Our formulation…

9 Affinity, Cont’d. mj qi nj pj qj LaTeX:
\documentclass{slides}\pagestyle{empty} \newcommand{\ii}{\vspace{-1.25em}\item} \newcommand{\iii}{\vspace{-0.60em}\item} \newcommand{\iiii}{\vspace{-0.45em}\item} \begin{document} \tiny \begin{itemize} \ii \textbf{Basic formulae:} \iii Symmetric affinity: $A_{ij} = min\left(a_{ij}, a_{ji}\right)$ \iii Asymmetric affinity: $a_{ij} = p_{ij} n_{ij} d_{ij} f_{ij}$ \end{itemize} \ii \textbf{Where...} \iii $\sigma_i$ is the RMS$^2$ biquadratic fit error \iii $\sigma = \sum_{i=1}^{N}{\sigma_i}/N$ \iii $p_{ij} = e^{-\left|\overline{p}_j - \overline{q}_j\right|^2 / \sigma^2}$ \iiii $\overline{p}_j = $ the projection of point $\overline{q}_j$ onto $i$'s surface estimate \iii $n_{ij} = e^{-\left(\left(\overline{m}_j.x - \overline{n}_j.x \right)^2 + \left(\overline{m}_j.y - \overline{n}_j.y \right)^2\right) / 4 \sigma^2}$ \iiii $\overline{m}_j = $ the surface normal at $\overline{p}_j$, using surface $i$ \iiii $\overline{n}_j = $ the surface normal at $\overline{q}_j$, using surface $j$ \iii $d_{ij} = e^{-2 \left|\overline{q}_i - \overline{q}_j\right|^2 / r^2}$ \iii $f_{ij} = e^{-\sigma_i^2/ \sigma^2} e^{-\sigma_j^2/ \sigma^2}$ \end{document}

10 Spectral Clustering Aij is “block diagonal”  Non-zero elements of the 1st eigenvector define a cluster [Weiss,Sarkar96] y1, where Ayi=li yi Aij

11 Spectral Clustering, Cont’d.
Example using our data… y1, where Ayi=li yi Aij 1st Cluster

12 Spectral Clustering: Normalized Cuts
Tend to get disjoint clusters Need to balance clustering and segmentation

13 = Graph Matching ? For each model i
R: For each unused object segment s For each (model segment i.t , NULL segment) Compute penalty for matching s to i.t + all previous matches made Save this match if it’s better than any other Recurse to R Save the best matching of model and object segments for model i Choose the model with the best match Partial LaTeX source for match error score (not shown on slide): \documentclass{slides}\pagestyle{empty} \begin{document} \tiny $N = $ number of segments matched\\ $i = $ segment number\\ $E = 1 - (1-U)^\mu (1-O)^\omega (1-A)^\alpha$\\ $U = \sum_{i=1}^{N} u_i/N, O = \sum_{i=1}^{N} o_i/N, D = \sum_{i=1}^{N} d_i/N $\\ $A = min\left(1, \left|1 - \sum_{i=1}^{N}area(i) / (total\_model\_area) \right|\right) $ \\ $u_i = $ \\ $o_i = \sum_{i=1}^{N-1} | \angle seg\_normal_N, seg\_normal_i - $\\ \hspace*{1.05in} $\angle model\_normal_N, model\_normal_i | \cdot 2 / \pi N $ \\ $d_i = \sum_{i=1}^{N-1} DIST(\left|seg\_centroid_N - seg\_centroid_i\right|, $\\ \hspace*{1.65in} $\left|model\_centroid_N - model\_centroid_i\right|) / N$ \\ \end{document}

14 Graph Matching: Segment Attributes
= ? Unary attributes (for comparing one object segment to one model segment) Segment area Mean and Gaussian Curvature (from a new biquadratic fit to the voxel points participating in the segment) “Distinctiveness” Binary attributes (for comparing a pair of object segments to a pair of model segments) Centroid separation Angle between normals at the centroid

15 Further Reading Y. Weiss et al. “Segmentation using eigenvectors: a unifying view”. ICCV: , 1999. S. Sarkar and K.L. Boyer. “Quantitative measures of change based on feature organization: eigenvalues and eigenvectors”. CVPR 1996. J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”. PAMI: , 2000.


Download ppt "Vehicle Recognition System"

Similar presentations


Ads by Google