Download presentation
Presentation is loading. Please wait.
Published byFranklin Anderson Modified over 5 years ago
1
1.2 Analyzing Graphs of Functions and Relations
2
Even functions – for every x in the domain of f, f(-x) = f(x)
3
Even functions – for every x in the domain of f, f(-x) = f(x) Odd functions – for every x in the domain of f, f(-x) = -f(x)
4
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x
5
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x f(-x) = (-x)3 – 2(-x)
6
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x f(-x) = (-x)3 – 2(-x) = -x3 + 2x
7
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x f(-x) = (-x)3 – 2(-x) = -x3 + 2x = -(x3 – 2x)
8
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x f(-x) = (-x)3 – 2(-x) = -x3 + 2x = -(x3 – 2x) So f(x) = -f(x)
9
Ex. 1 Determine whether each function is even, odd, or neither. a
Ex. 1 Determine whether each function is even, odd, or neither. a. f(x) = x3 – 2x f(-x) = (-x)3 – 2(-x) = -x3 + 2x = -(x3 – 2x) So f(x) = -f(x) So ODD
10
b. g(x) = x4 + 2
11
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2
12
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2
13
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x)
14
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN
15
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c. h(x) = x3 – 0.5x2 – 3x
16
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c. h(x) = x3 – 0.5x2 – 3x h(-x) = (-x)3 – 0.5(-x)2 – 3(-x)
17
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c. h(x) = x3 – 0.5x2 – 3x h(-x) = (-x)3 – 0.5(-x)2 – 3(-x) = -x3 – 0.5x2 + 3x
18
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c. h(x) = x3 – 0.5x2 – 3x h(-x) = (-x)3 – 0.5(-x)2 – 3(-x) = -x3 – 0.5x2 + 3x = -(x x2 – 3x)
19
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c
b. g(x) = x4 + 2 g(-x) = (-x)4 + 2 = x4 + 2 So g(-x) = g(x) So EVEN c. h(x) = x3 – 0.5x2 – 3x h(-x) = (-x)3 – 0.5(-x)2 – 3(-x) = -x3 – 0.5x2 + 3x = -(x x2 – 3x) So NEITHER
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.