Download presentation
Presentation is loading. Please wait.
1
Ellipse Conic Sections
2
Ellipse The plane can intersect one nappe of the cone at an angle to the axis resulting in an ellipse.
3
Ellipse - Definition An ellipse is the set of all points in a plane such that the sum of the distances from two points (foci) is a constant. d1 + d2 = a constant value.
4
Finding An Equation Ellipse
5
Ellipse - Equation To find the equation of an ellipse, let the center be at (0, 0). The vertices on the axes are at (a, 0), (-a, 0), (0, b) and (0, -b). The foci are at (c, 0) and (-c, 0).
6
Ellipse - Equation According to the definition. The sum of the distances from the foci to any point on the ellipse is a constant.
7
Ellipse - Equation The distance from the foci to the point (a, 0) is 2a. Why?
8
Ellipse - Equation The distance from (c, 0) to (a, 0) is the same as from (-a, 0) to (-c, 0).
9
Ellipse - Equation The distance from (-c, 0) to (a, 0) added to the distance from (-a, 0) to (-c, 0) is the same as going from (-a, 0) to (a, 0) which is a distance of 2a.
10
Ellipse - Equation Therefore, d1 + d2 = 2a. Using the distance formula,
11
Ellipse - Equation Simplify: Square both sides.
Subtract y2 and square binomials.
12
Ellipse - Equation Simplify: Solve for the term with the square root.
Square both sides.
13
Ellipse - Equation Simplify:
Get x terms, y terms, and other terms together.
14
Ellipse - Equation Simplify: Divide both sides by a2(c2-a2)
15
Ellipse - Equation Change the sign and run the negative through the denominator. At this point, let’s pause and investigate a2 – c2.
16
Ellipse - Equation d1 + d2 must equal 2a. However, the triangle created is an isosceles triangle and d1 = d2. Therefore, d1 and d2 for the point (0, b) must both equal “a”.
17
Ellipse - Equation This creates a right triangle with hypotenuse of length “a” and legs of length “b” and “c”. Using the pythagorean theorem, b2 + c2 = a2.
18
Ellipse - Equation We now know….. and b2 + c2 = a2 b2 = a2 – c2
Substituting for a2 - c2 where c2 = |a2 – b2|
19
Ellipse - Equation The equation of an ellipse centered at (0, 0) is ….
where a2 = b2 + c2 and c is the distance from the center to the foci. Shifting the graph over h units and up k units, the center is at (h, k) and the equation is where a2 = b2 + c2 and c is the distance from the center to the foci.
20
Ellipse - Graphing where a2 = b2 + c2 and c is the distance from the center to the foci. Vertices are “a” units in the x direction an “b” units in the y direction. b a a c c The foci are “c” units in the direction of the longer (major) axis. b
21
Ellipse Ellipse - Graphing
Graph - Example #1 Ellipse Ellipse - Graphing
22
Ellipse - Graphing Graph:
23
Graph - Example #2 Ellipse
24
Ellipse - Graphing Graph:
25
Find An Equation Ellipse
26
Ellipse – Find An Equation
Find an equation of an ellipse with foci at (-1, -3) and (5, -3). The minor axis has a length of 4.
27
Ellipse – Story Problem
A semielliptical arch is to have a span of 100 feet. The height of the arch, at a distance 40 feet from the center is to be 100 feet. Find the height of the arch at its center.
28
Ellipse – Story Problem
A hall 100 feet in length is to be designed into a whispering gallery. If the foci are located 25 feet from the center, how high will the ceiling be at the center?
29
Assignment: Wksheet #4-7**, 20-23, 33, 38, 46, 47
**Graph and find center, major vertices, minor vertices, and foci Please use graph paper!!
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.