Download presentation
Presentation is loading. Please wait.
1
Selected simulations for XFEL photo injector
Could ellipsoidal shaping be useful for the European XFEL photo injector? M. Krasilnikov, DESY Mini - Workshop on Laser Pulse Shaping DESY Zeuthen
2
Outline Optimization of the XFEL photo injector Conclusions
Specifications and layout Optimization strategy Flat-top laser (cylindrical laser pulse shape) Influence of the thermal emittance Ellipsoidal cathode laser shape Flat-top imperfection influence Conclusions 28 February, 2019 M.Krasilnikov, DESY
3
XFEL Photo Injector Specifications
1 nC charge Uniform transverse distribution Longitudinal flat-top 20 ps with 2 ps rise time Emittance 0.9 mm mrad incl. thermal emittance 60 MV/m at photo cathode 28 February, 2019 M.Krasilnikov, DESY
4
XFEL photo injector layout
Superconducting TESLA module (ACC1) RF gun 28 February, 2019 M.Krasilnikov, DESY
5
Optimization of the XFEL photo injector
Cathode laser (XYrms, [Trms]) + gun parameters (RF Phase, Imain, [sol.pos]) [ ] Emittance (+slope) Booster optimization (booster cavity z-position, gradient and RF phase) Initial guess: booster matching conditions 0 step. “tune” the bunch charge: Emission effects (SC, Schottky) Xrms,Xemit 1 step. Run ASTRA till z=5m 28 February, 2019 M.Krasilnikov, DESY
6
Thermal emittance Ek=0.55 eV
Thermal emittance measured at PITZ is higher than expected from theoretical predictions (Schottky effect, cath. roughness) Ek=0.55 eV ph=4.75 eV 28 February, 2019 M.Krasilnikov, DESY
7
Simulation Cases Thermal emittance Ek=0.55 eV Ek=1.0 eV 2 Cylindrical
laser shape 2 1 3 emittance 4 Elliptical laser shape 6 7 5 28 February, 2019 M.Krasilnikov, DESY
8
Optimization of the XFEL photo injector
Case 1: Cylindrical laser shape, flat-top intensity profile 20 ps FWHM 2 ps rise/fall time Optimized parameters: Cathode laser XYrms RF gun launch phase Main solenoid peak field* Booster z-position Booster gradient Booster RF phase *Bucking solenoid - always compensated 28 February, 2019 M.Krasilnikov, DESY
9
Optimization of the XFEL photo injector
Case 1: Cylindrical laser shape, flat-top intensity profile Bunch slice z=15m 28 February, 2019 M.Krasilnikov, DESY
10
Optimization of the XFEL photo injector
Case 2: Cylindrical laser shape, flat-top intensity profile. Increased thermal kinetic energy 0.55 eV → 1.0eV Bunch slice 28 February, 2019 M.Krasilnikov, DESY
11
XFEL photo injector: Influence of the thermal emittance
?Further optimization: Cathode laser XYrms RF gun launch phase Main solenoid peak field Booster z-position Booster gradient Booster RF phase 28 February, 2019 M.Krasilnikov, DESY
12
Optimization of the XFEL photo injector
Case 3: Cylindrical laser shape, flat-top intensity profile. Increased thermal kinetic energy 1.0eV, optimized Bunch slice Only tiny emittance improvement! 28 February, 2019 M.Krasilnikov, DESY
13
Laser Shape: Ellipsoid instead of Cylindrical
Trms=5.8 ps XYrms=0.44 mm 20 ps FWHM 2 ps rise/fall time 28 February, 2019 M.Krasilnikov, DESY
14
XFEL photo injector: Ellipsoid Vs. Cylinder
Case 4: 3D-ellipsoidal laser shape. Ek=0.55eV Bunch slice 28 February, 2019 M.Krasilnikov, DESY
15
XFEL photo injector: Ellipsoid Vs. Cylinder
Case 5: 3D-ellipsoidal laser shape. Ek=0.55eV, optimized Optimized parameters: Cathode laser XYrms Cathode laser Trms RF gun launch phase Main solenoid peak field* Booster gradient Booster RF phase *Bucking solenoid - always compensated 28 February, 2019 M.Krasilnikov, DESY
16
XFEL photo injector: Ellipsoid Vs. Cylinder
Charge density and slice emittance 28 February, 2019 M.Krasilnikov, DESY
17
XFEL photo injector: Ellipsoid with Ek=1.0 eV
Case 6: 3D-ellipsoidal laser shape. (=case 5 + Ek=1.0eV) 28 February, 2019 M.Krasilnikov, DESY
18
XFEL photo injector: Ellipsoid Vs. Cylinder
Case 6: 3D-ellipsoidal laser shape. (=case 5 + Ek=1.0eV) 28 February, 2019 M.Krasilnikov, DESY
19
XFEL photo injector: Ellipsoid with Ek=1.0 eV
Case 7: 3D-ellipsoidal laser shape, Ek=1.0eV . optimized 28 February, 2019 M.Krasilnikov, DESY
20
XFEL photo injector: Ellipsoid Vs. Cylinder
Case 7: 3D-ellipsoidal laser shape, Ek=1.0eV . optimized 28 February, 2019 M.Krasilnikov, DESY
21
XFEL photo injector: Ellipsoid Vs. Cylinder
Charge density and slice emittance. Ek=1.0eV 28 February, 2019 M.Krasilnikov, DESY
22
Ellipsoid Vs. Cylinder: Emittance Summary
Projected Slice (centre) 28 February, 2019 M.Krasilnikov, DESY
23
XFEL photo injector: Ellipsoid Vs. Cylinder
Electron bunch cylindrical cathode laser shape Electron bunch ellipsoidal cathode laser shape 28 February, 2019 M.Krasilnikov, DESY
24
Laser shape fine adjustment
cathode laser shape electron 28 February, 2019 M.Krasilnikov, DESY
25
Cathode laser imperfections
Emittance growth due to flat-top modulation cath.laser profile cath.laser profile 28 February, 2019 M.Krasilnikov, DESY
26
Cathode laser imperfections: FT modulation
Cathode laser intensity and electron bunch density 28 February, 2019 M.Krasilnikov, DESY
27
Cathode laser imperfections: FT modulation
Microbunching instability gain (courtesy M.Dohlus) Electron bunch density modulation vs. cathode laser intensity modulation 30 n=5 l=1.1mm n=3 l=1.7mm n=1 l=4mm 28 February, 2019 M.Krasilnikov, DESY
28
Conclusions By optimization the main parameters of the XFEL photo injector one can simulate rather small projected normalized emittance: Slice emittance of the bunch centre reduced in ~10% by applying an ellipsoid laser pulse. Main reduction of the projected emittance is due to significant decrease in head and tail slice emittance of the ellipsoid But practical realization can face problems of shape imperfections (tight tolerances) Ek=0.55 eV 0.68 mm mrad 0.46 mm mrad Ek=1.0 eV 0.77 mm mrad mm mrad 28 February, 2019 M.Krasilnikov, DESY
29
28 February, 2019 M.Krasilnikov, DESY
30
Optimization of the XFEL photo injector
Based on ASTRA simulations Actual solenoid position Strategy: 2-staged* optimization 1. Only gun (Ecath=60MV/m) 2. Booster (first ½ of ACC1) Scan of the second ½ of ACC1 gradient Goal function: emittance (incl. slope) Penalty function: charge, momentum spread, variable parameters range 28 February, 2019 M.Krasilnikov, DESY
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.