Download presentation
Presentation is loading. Please wait.
Published byEmery Small Modified over 5 years ago
1
State Machines EECS 20 Lecture 8 (February 2, 2001) Tom Henzinger
2
Finite-Memory Systems
Discrete-Time Delay: remember last input value Discrete-Time Moving Average: remember last 2 input values Parity: remember if number of past inputs “true” is even Infinite-Memory Systems Count: remember if number of past inputs “true” is greater than number of past inputs “false”
3
t, t, t, f, f, t, t, … Parity t, f, t, f, f, f, t, …
4
{ The Parity System Parity : [ Nats0 Bools ] [ Nats0 Bools ]
such that x [ Nats0 Bools ] , y Nats0 , ( Parity (x) ) (y) = true if | trueValues (x,y) | is even false if | trueValues (x,y) | is odd { where trueValues (x,y) = { z Nats0 | z < y x (z) = true }
5
t, t, f, f, f, t, t, … Count t, t, t, t, t, f, t, …
6
{ The Count System Count : [ Nats0 Bools ] [ Nats0 Bools ]
such that x [ Nats0 Bools ] , y Nats0 , ( Count (x) ) (y) = true if | trueValues (x,y) | | falseValues (x,y) | false if | trueValues (x,y) | < | falseValues (x,y) | { where falseValues (x,y) = { z Nats0 | z < y x (z) = false }
7
An Implementation of the Parity System
Bools Dt Bools
8
An Implementation of the Parity System
t, f, t, … Dt t
9
An Implementation of the Parity System
t, f, t, … Dt t, f
10
An Implementation of the Parity System
t, f, t, … Dt t, f, f
11
An Implementation of the Parity System
t, f, t, … Dt t, f, f, t
12
An Implementation of the Parity System
t, f, t, … Dt t, f, f, t Memory = “state” of the system
13
Systems with finite memory are naturally implemented as
finite state machines ( or finite transition systems ) .
14
An Implementation of the Count System
Ints Ints Bools pos D0 Bools
15
{ { ± : Bools Ints Ints such that x Bools, y Ints,
± (x,y) = y if x = true y if x = false { pos : Ints Bools such that x Ints, pos (x) = true if x 0 false if x < 0 {
16
An Implementation of the Count System
3 t, t, t, … pos D0 t, t, t, t
17
An Implementation of the Count System
3 t, t, t, … pos D0 t, t, t, t infinite state
18
Systems with countable ( integer ) memory are naturally implemented as
infinite state machines ( or infinite transition systems ) .
19
( Systems with uncountable ( real ) memory,
such as continuous-time delay, are not naturally viewed naturally as transition systems. )
20
A Discrete-Time Reactive System
F Nats0 Inputs Nats0 Outputs F : [ Nats0 Inputs ] [ Nats0 Outputs ]
21
State-Based Implementation
F 2 2 Update Nats0 Inputs Nats0 Outputs 1 1 Dc Nats0 States Nats0 States Update: memory-free Memory = States
22
update : States Inputs States Outputs
State Implementation F 2 2 Update Nats0 Inputs Nats0 Outputs 1 1 Dc Nats0 States Nats0 States update : States Inputs States Outputs c States ( “initial state” )
23
State Implementation of the Parity System
Inputs = Bools Outputs = Bools States = Bools initialState = true update : States Inputs States Outputs such that q States, x Inputs, update (q,x) 1 = ( q x ) update (q,x) 2 = q
24
State Implementation of the Count System
Inputs = Bools Outputs = Bools States = Ints initialState = 0 update : States Inputs States Outputs such that q States, x Inputs, update (q,x) 1 = ± (x,q) update (q,x) 2 = pos (q)
25
A State Machine Inputs ( set of possible input values ) Outputs ( set of possible output values ) States ( set of states ) initialState States update : States Inputs States Outputs
26
A state machine is finite iff States is a finite set. Parity : can be implemented by a two-state machine. Count : cannot be implemented by finite-state machine.
27
Discrete-Time Reactive Systems
Every memory-free system can be implemented by a one-state machine. Every causal system can be implemented by a state machine ( take as state the entire history of inputs ), and every system that can be implemented by a state machine is causal.
28
The Block Diagram of a State Machine
2 2 Update Nats0 Inputs Nats0 Outputs 1 1 DinitialState Nats0 States Nats0 States
29
The Transition Table of a Finite-State Machine ( Parity )
Current state Input Next state Output true true false true true false true true false true true false false false false false
30
The Transition Diagram of a State Machine ( Parity )
true / true true false true / false false / false false / true States = Bools Inputs = Bools Outputs = Bools
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.