Presentation is loading. Please wait.

Presentation is loading. Please wait.

Factored Form for Quadratic Relations

Similar presentations


Presentation on theme: "Factored Form for Quadratic Relations"β€” Presentation transcript:

1 Factored Form for Quadratic Relations

2 Example of Factored Form
𝑦=(π‘₯βˆ’1)(π‘₯βˆ’3) Same as 𝑦= π‘₯ 2 βˆ’4π‘₯+3 and 𝑦= π‘₯βˆ’2 2 βˆ’1 factor factor

3 𝑦=(π‘₯βˆ’1)(π‘₯βˆ’3)

4 Example of Factored Form
𝑦=2(π‘₯βˆ’1)(π‘₯βˆ’3) Same as 𝑦= 2π‘₯ 2 βˆ’8π‘₯+6 and 𝑦= 2 π‘₯βˆ’2 2 βˆ’2 factor factor π‘Ž

5 𝑦=2(π‘₯βˆ’1)(π‘₯βˆ’3)

6 𝑦=3(π‘₯βˆ’1)(π‘₯βˆ’3)

7 𝑦=βˆ’(π‘₯βˆ’1)(π‘₯βˆ’3)

8 𝑦=βˆ’2(π‘₯βˆ’1)(π‘₯βˆ’3)

9 𝑦=βˆ’3(π‘₯βˆ’1)(π‘₯βˆ’3)

10 The General Factored Form
Coefficient is 1! Always! Srsly! 𝑦=π‘Ž(π‘₯βˆ’π‘Ÿ)(π‘₯βˆ’π‘ ) factor factor π‘Ÿ and 𝑠 are the zeros/roots

11 Examples of Factored Form
Roots/Zeros 𝑦=3(π‘₯βˆ’5)(π‘₯βˆ’2) +5, +2 𝑦=βˆ’ 4 5 (π‘₯+1)(π‘₯βˆ’4) βˆ’1, +4 𝑦=βˆ’π‘₯(π‘₯βˆ’2) 0, +2 𝑦= π‘₯+2 2 βˆ’2, βˆ’2

12 Why do we have more than one form?
Easy to see… Vertex Form π’š=𝒂 π’™βˆ’π’‰ 𝟐 +π’Œ Factored Form π’š=𝒂(π’™βˆ’π’“)(π’™βˆ’π’”) Standard Form π’š=𝒂 𝒙 𝟐 +𝒃𝒙+𝒄 Vertex οƒΌ Roots/Zeros 𝑦-intercept Stretch or Compression Factor

13 Finding the Vertex 𝑦= 1 2 (π‘₯βˆ’3)(π‘₯+1) 𝑦= π‘₯βˆ’1 2 βˆ’2

14 Finding the Vertex 𝑦=4 π‘₯βˆ’2 π‘₯+5 Find the midpoint of the two roots
𝑦=4 π‘₯βˆ’2 π‘₯+5 Find the midpoint of the two roots gives us the Axis of Symmetry gives us the π‘₯-coordinate of the vertex Evaluate the function at that π‘₯-value gives us the 𝑦-coordinate of the vertex Roots: (2,0) and (βˆ’5,0) Midpoint of Roots: 2βˆ’5 2 ,0 = βˆ’ 3 2 ,0 Evaluate function at π‘₯=βˆ’ 3 2 : 𝑦=4 βˆ’ 3 2 βˆ’2 βˆ’ 𝑦=4 βˆ’ 𝑦=βˆ’49


Download ppt "Factored Form for Quadratic Relations"

Similar presentations


Ads by Google