Presentation is loading. Please wait.

Presentation is loading. Please wait.

10-6: Find Segment Lengths in Circles

Similar presentations


Presentation on theme: "10-6: Find Segment Lengths in Circles"β€” Presentation transcript:

1 10-6: Find Segment Lengths in Circles
Geometry Chapter 10 10-6: Find Segment Lengths in Circles

2 Warm-Up Solve the following equations for x.
1.) π‘₯ π‘₯+4 = 1 2 ( 2π‘₯ 2 +24) ) 5π‘₯βˆ’6= π‘₯ 2 2.) π‘₯ 2 +4π‘₯+5= 2π‘₯ ) 2π‘₯ 2 +3π‘₯= π‘₯ 2 +4

3 Warm-Up Solve the following equations for x.
1.) π‘₯ π‘₯+4 = 1 2 ( 2π‘₯ 2 +24) π‘₯ 2 +4π‘₯= π‘₯ 2 +12 4π‘₯=12 𝒙=πŸ‘

4 Warm-Up Solve the following equations for x. 2.) π‘₯ 2 +4π‘₯+5= 2π‘₯ 2 +5
2.) π‘₯ 2 +4π‘₯+5= 2π‘₯ 2 +5 4π‘₯= π‘₯ 2 𝒙=πŸ’

5 Warm-Up Solve the following equations for x. 3.) 5π‘₯βˆ’6= π‘₯ 2 π‘₯ 2 βˆ’5π‘₯+6=0

6 Warm-Up Solve the following equations for x. 3.) 5π‘₯βˆ’6= π‘₯ 2 π‘₯ 2 βˆ’5π‘₯+6=0
π‘₯ 2 βˆ’2π‘₯βˆ’3π‘₯+6=0 π‘₯ π‘₯βˆ’2 βˆ’3 π‘₯βˆ’2 =0 π‘₯βˆ’2 π‘₯βˆ’3 =0

7 Warm-Up Solve the following equations for x. 3.) 5π‘₯βˆ’6= π‘₯ 2 π‘₯ 2 βˆ’5π‘₯+6=0
π‘₯ 2 βˆ’2π‘₯βˆ’3π‘₯+6=0 π‘₯ π‘₯βˆ’2 βˆ’3 π‘₯βˆ’2 =0 π‘₯βˆ’2 π‘₯βˆ’3 =0 π‘₯βˆ’2= π‘₯βˆ’3=0 𝒙=𝟐 𝒙=πŸ‘

8 Warm-Up Solve the following equations for x. 4.) 2π‘₯ 2 +3π‘₯= π‘₯ 2 +4
π‘₯ 2 +3π‘₯βˆ’4=0

9 Warm-Up Solve the following equations for x. 4.) 2π‘₯ 2 +3π‘₯= π‘₯ 2 +4
π‘₯ 2 +3π‘₯βˆ’4=0 π‘₯ 2 βˆ’π‘₯+4π‘₯βˆ’4=0 π‘₯ π‘₯βˆ’1 +4 π‘₯βˆ’1 =0 π‘₯+4 π‘₯βˆ’1 =0

10 Warm-Up Solve the following equations for x. 4.) 2π‘₯ 2 +3π‘₯= π‘₯ 2 +4
π‘₯ 2 +3π‘₯βˆ’4=0 π‘₯ 2 βˆ’π‘₯+4π‘₯βˆ’4=0 π‘₯ π‘₯βˆ’1 +4 π‘₯βˆ’1 =0 π‘₯+4 π‘₯βˆ’1 =0 π‘₯+4= π‘₯βˆ’1=0 𝒙=βˆ’πŸ’ 𝒙=𝟏

11 Find Segment Lengths in Circles
Objective: Students will be able to find segment lengths of chords, secants, and tangents of circles. Agenda Chord Lengths Secant Lengths Tangent Lengths

12 Segments of Chords When two chords intersect in the interior of a circle, each chord is divided into two segments that are called segments of the chord. A B E C D 𝑬𝑨 and 𝑬𝑩 are the segments of chord 𝐴𝐡 𝑬π‘ͺ and 𝑬𝑫 are the segments of chord 𝐢𝐷

13 Theorem 10.14 Theorem – Segments of Chords Theorem: If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. A B E C D π‘¬π‘¨βˆ™π‘¬π‘©=𝑬π‘ͺβˆ™π‘¬π‘«

14 Example 1 Find 𝑴𝑳 and 𝑱𝑲. 𝑴 𝑳 𝑡 𝑲 𝑱 𝒙+𝟐 𝒙+𝟏 𝒙 𝒙+πŸ’

15 Example 1 Find 𝑴𝑳 and 𝑱𝑲. By Thm. 10.14, 𝑴 π‘€π‘βˆ™π‘πΏ=πΎπ‘βˆ™π‘π½ 𝒙+𝟐 𝑱 𝑡 𝒙+πŸ’ 𝑲 𝒙
𝒙+𝟏 𝒙 𝒙+πŸ’

16 Example 1 Find 𝑴𝑳 and 𝑱𝑲. By Thm. 10.14, 𝑴 π‘€π‘βˆ™π‘πΏ=πΎπ‘βˆ™π‘π½ π‘₯+2 π‘₯+1 =π‘₯(π‘₯+4)
π‘₯+2 π‘₯+1 =π‘₯(π‘₯+4) π‘₯ 2 +3π‘₯+2= π‘₯ 2 +4π‘₯ 𝒙=𝟐 𝑴 𝑳 𝑡 𝑲 𝑱 𝒙+𝟐 𝒙+𝟏 𝒙 𝒙+πŸ’

17 Example 1 Find 𝑴𝑳 and 𝑱𝑲. For ML 𝑀𝐿=π‘₯+2+π‘₯+1 𝑀𝐿= 2 +2+ 2 +1
𝑴𝑳=πŸ• By Thm , π‘€π‘βˆ™π‘πΏ=πΎπ‘βˆ™π‘π½ π‘₯+2 π‘₯+1 =π‘₯(π‘₯+4) π‘₯ 2 +3π‘₯+2= π‘₯ 2 +4π‘₯ 𝒙=𝟐 𝑴 𝑳 𝑡 𝑲 𝑱 𝒙+𝟐 𝒙+𝟏 𝒙 𝒙+πŸ’

18 Example 1 Find 𝑴𝑳 and 𝑱𝑲. For ML 𝑀𝐿=π‘₯+2+π‘₯+1 𝑀𝐿= 2 +2+ 2 +1
𝑴𝑳=πŸ• By Thm , π‘€π‘βˆ™π‘πΏ=πΎπ‘βˆ™π‘π½ π‘₯+2 π‘₯+1 =π‘₯(π‘₯+4) π‘₯ 2 +3π‘₯+2= π‘₯ 2 +4π‘₯ 𝒙=𝟐 𝑴 𝑳 𝑡 𝑲 𝑱 𝒙+𝟐 𝒙+𝟏 𝒙 𝒙+πŸ’ For KJ 𝐾𝐽=π‘₯+π‘₯+4 𝐾𝐽= 𝑲𝑱=πŸ–

19 Example 2 Find 𝑹𝑻 and 𝑺𝑼. 𝑹 𝑽 𝑻 𝑼 𝑺 𝒙+𝟏 πŸ’π’™ 𝒙 πŸ‘π’™

20 Example 2 Find 𝑹𝑻 and 𝑺𝑼. 𝑺 By Thm. 10.14, 𝑹 π‘…π‘‰βˆ™π‘‰π‘‡=π‘ˆπ‘‰βˆ™π‘‰π‘† 𝒙
𝑽 𝑻 𝑼 𝑺 𝒙+𝟏 πŸ’π’™ 𝒙 πŸ‘π’™ By Thm , π‘…π‘‰βˆ™π‘‰π‘‡=π‘ˆπ‘‰βˆ™π‘‰π‘† 3π‘₯ π‘₯+1 =π‘₯βˆ™4π‘₯ 3π‘₯ 2 +3π‘₯=4 π‘₯ 2 3π‘₯= π‘₯ 2 𝒙=πŸ‘

21 Example 2 Find 𝑹𝑻 and 𝑺𝑼. 𝑹 𝑽 𝑻 𝑼 𝑺 𝒙+𝟏 πŸ’π’™ 𝒙 πŸ‘π’™ For RT 𝑅𝑇=3π‘₯+π‘₯+1
𝑅𝑇= 𝑅𝑇=9+3+1 𝑹𝑻=πŸπŸ‘ By Thm , π‘…π‘‰βˆ™π‘‰π‘‡=π‘ˆπ‘‰βˆ™π‘‰π‘† 3π‘₯ π‘₯+1 =π‘₯βˆ™4π‘₯ 3π‘₯ 2 +3π‘₯=4 π‘₯ 2 3π‘₯= π‘₯ 2 𝒙=πŸ‘

22 Example 2 Find 𝑹𝑻 and 𝑺𝑼. 𝑹 𝑽 𝑻 𝑼 𝑺 𝒙+𝟏 πŸ’π’™ 𝒙 πŸ‘π’™ For RT 𝑅𝑇=3π‘₯+π‘₯+1
𝑅𝑇= 𝑅𝑇=9+3+1 𝑹𝑻=πŸπŸ‘ By Thm , π‘…π‘‰βˆ™π‘‰π‘‡=π‘ˆπ‘‰βˆ™π‘‰π‘† 3π‘₯ π‘₯+1 =π‘₯βˆ™4π‘₯ 3π‘₯ 2 +3π‘₯=4 π‘₯ 2 3π‘₯= π‘₯ 2 𝒙=πŸ‘ For SU π‘†π‘ˆ=π‘₯+4π‘₯ π‘†π‘ˆ= π‘†π‘ˆ=3+12 𝑺𝑼=πŸπŸ“

23 Tangents and Secants 𝑨π‘ͺ is the external segment of secant 𝑨𝑩
A secant segment is a segment that contains a chord of the circle, and has exactly one endpoint outside the circle. The part of the secant segment that is outside the circle is called the external segment. A B C D 𝑨π‘ͺ is the external segment of secant 𝑨𝑩 𝑨𝑫 is a tangent segment

24 Theorem 10.15 Theorem – Segments of Secants Theorem: If two secant segments share the same endpoint, then the product of the lengths of each secant segment, along with its external segment, are equal. A B E C D π‘¬π‘¨βˆ™π‘¬π‘©=𝑬π‘ͺβˆ™π‘¬π‘«

25 Example 3a Find the value(s)of x. πŸ” πŸ— 𝒙 πŸ“

26 Example 3a Find the value(s)of x. πŸ” πŸ— 𝒙 πŸ“ πŸπŸ“ 𝒙+πŸ“

27 Example 3a Find the value(s)of x. πŸ— πŸ” 𝒙 πŸ“ By Thm. 10.15, 15βˆ™6=5(π‘₯+5)
πŸπŸ“ 𝒙+πŸ“

28 Example 3a Find the value(s)of x. πŸ— πŸ” 𝒙 πŸ“ By Thm. 10.15, 15βˆ™6=5(π‘₯+5)
90=5π‘₯+25 65=5π‘₯ 𝒙=πŸπŸ‘ πŸ” πŸ— 𝒙 πŸ“ πŸπŸ“ 𝒙+πŸ“

29 Example 3b Find the value(s)of x. πŸ‘ 𝒙 πŸ’ 𝟐

30 Example 3b Find the value(s)of x. 𝒙 πŸ‘ πŸ’ 𝟐 By Thm. 10.15, 4βˆ™6=3(π‘₯+3)
πŸ” 𝒙+πŸ‘

31 Example 3b Find the value(s)of x. 𝒙 πŸ‘ πŸ’ 𝟐 By Thm. 10.15, 4βˆ™6=3(π‘₯+3)
24=3π‘₯+9 15=3π‘₯ 𝒙=πŸ“ πŸ‘ 𝒙 πŸ’ 𝟐 πŸ” 𝒙+πŸ‘

32 Example 3c Find the value(s)of x. πŸ‘ 𝒙+𝟐 𝒙+𝟏 π’™βˆ’πŸ

33 Example 3c Find the value(s)of x. πŸ‘ 𝒙+𝟐 𝒙+𝟏 π’™βˆ’πŸ πŸπ’™ 𝒙+πŸ“

34 Example 3c Find the value(s)of x. 𝒙+πŸ“ πŸπ’™ By Thm. 10.15, 3(π‘₯+5)=2π‘₯(π‘₯+1)
3π‘₯+15= 2π‘₯ 2 +2π‘₯ 2π‘₯ 2 βˆ’π‘₯βˆ’15=0 πŸ‘ 𝒙+𝟐 𝒙+𝟏 π’™βˆ’πŸ πŸπ’™ 𝒙+πŸ“

35 Example 3c Find the value(s)of x. 𝒙+πŸ“ πŸπ’™ By Thm. 10.15, 3(π‘₯+5)=2π‘₯(π‘₯+1)
3π‘₯+15= 2π‘₯ 2 +2π‘₯ 2π‘₯ 2 βˆ’π‘₯βˆ’15=0 2π‘₯+5 π‘₯βˆ’3 =0 πŸ‘ 𝒙+𝟐 𝒙+𝟏 π’™βˆ’πŸ πŸπ’™ 𝒙+πŸ“ 2π‘₯+5=0 𝒙=βˆ’ πŸ“ 𝟐 π‘₯βˆ’3=0 𝒙=πŸ‘

36 Example 3c Find the value(s)of x. 𝒙+πŸ“ πŸπ’™ By Thm. 10.15, 3(π‘₯+5)=2π‘₯(π‘₯+1)
3π‘₯+15= 2π‘₯ 2 +2π‘₯ 2π‘₯ 2 βˆ’π‘₯βˆ’15=0 2π‘₯+5 π‘₯βˆ’3 =0 πŸ‘ 𝒙+𝟐 𝒙+𝟏 π’™βˆ’πŸ πŸπ’™ 𝒙+πŸ“ π‘₯βˆ’3=0 𝒙=πŸ‘ 2π‘₯+5=0 𝒙=βˆ’ πŸ“ 𝟐 Why?

37 Theorem 10.16 Theorem – Segments of Secants and Tangents Theorem: If a secant and a tangent segment share the same endpoint, then the product of the lengths of the secant segment and its external segment equal the square of the length of the tangent segment. A E C D 𝑬𝑨 𝟐 =𝑬π‘ͺβˆ™π‘¬π‘«

38 Example 4 Find the value of x. 𝟏𝟐 πŸπ’™ 𝒙

39 Example 4 Find the value of x. 𝟏𝟐 πŸπ’™ 𝒙 𝒙+𝟏𝟐

40 Example 4 Find the value of x. 𝒙 πŸπ’™ 𝟏𝟐 𝒙+𝟏𝟐 By Thm. 10.16,
(2π‘₯) 2 =π‘₯(π‘₯+12) 𝟏𝟐 πŸπ’™ 𝒙 𝒙+𝟏𝟐

41 Example 4 Find the value of x. 𝒙 πŸπ’™ 𝟏𝟐 𝒙+𝟏𝟐 By Thm. 10.16,
(2π‘₯) 2 =π‘₯(π‘₯+12) 4π‘₯ 2 = π‘₯ 2 +12π‘₯ 3π‘₯ 2 =12π‘₯ 3π‘₯=12 𝒙=πŸ’ 𝟏𝟐 πŸπ’™ 𝒙 𝒙+𝟏𝟐

42 Example 5 Find the value of x. πŸπŸ” πŸπŸ’ 𝒙

43 Example 5 Find the value of x. πŸπŸ” πŸπŸ’ 𝒙 𝒙+πŸπŸ”

44 Example 5 Find the value of x. 𝒙 πŸπŸ’ πŸπŸ” 𝒙+πŸπŸ” By Thm. 10.16,
(24) 2 =16(π‘₯+16) 576=16π‘₯+256 320=16π‘₯ 𝒙=𝟐𝟎 πŸπŸ” πŸπŸ’ 𝒙 𝒙+πŸπŸ”

45 Extra Practice Find the value of x. State which theorem you used. 1.)
πŸ• πŸ“ 𝒙 2.) πŸπŸ– πŸ— 𝒙 πŸπŸ”

46 Extra Practice Find the value of x. State which theorem you used. 3.)
4.) 𝟏𝟐 𝟏𝟎 𝒙 πŸ– πŸπŸ• 𝒙 𝟏𝟐

47 Extra Practice 1.) Find the value of x. State which theorem you used.
πŸ• πŸ“ 𝒙

48 Extra Practice 1.) Find the value of x. State which theorem you used.
By Thm , 7 2 =5(π‘₯+5) 49=5π‘₯+25 24=5π‘₯ 𝒙=πŸ’.πŸ– πŸ• πŸ“ 𝒙 𝒙+πŸ“

49 Extra Practice 2.) Find the value of x. State which theorem you used.
πŸπŸ– πŸ— 𝒙 πŸπŸ”

50 Extra Practice 2.) Find the value of x. State which theorem you used.
By Thm , π‘₯βˆ™18=9βˆ™16 18π‘₯=144 𝒙=πŸ– πŸπŸ– πŸ— 𝒙 πŸπŸ”

51 Extra Practice 3.) Find the value of x. State which theorem you used.
𝟏𝟐 𝟏𝟎 𝒙

52 Extra Practice 3.) Find the value of x. State which theorem you used.
By Thm , 12 2 =π‘₯(π‘₯+10) 144= π‘₯ 2 +10π‘₯ π‘₯ 2 +10π‘₯βˆ’144=0 (π‘₯+18)(π‘₯βˆ’8) 𝒙+πŸπŸ–=𝟎 π’™βˆ’πŸ–=𝟎 𝒙=βˆ’πŸπŸ– 𝒙=πŸ– 𝟏𝟐 𝟏𝟎 𝒙 𝒙+𝟏𝟎

53 Extra Practice 4.) Find the value of x. State which theorem you used.
πŸ– πŸπŸ• 𝒙 𝟏𝟐

54 Extra Practice 4.) Find the value of x. State which theorem you used.
By Thm , 8βˆ™20=π‘₯(π‘₯+27) 160= π‘₯ 2 +27π‘₯ π‘₯ 2 +27π‘₯βˆ’160=0 π‘₯+32 π‘₯βˆ’5 =0 𝒙+πŸ‘πŸ=𝟎 π’™βˆ’πŸ“=𝟎 𝒙=βˆ’πŸ‘πŸ 𝒙=πŸ“ πŸ– πŸπŸ• 𝒙 𝟏𝟐 𝟐𝟎 𝒙+πŸπŸ•


Download ppt "10-6: Find Segment Lengths in Circles"

Similar presentations


Ads by Google