Download presentation
Presentation is loading. Please wait.
1
Shedding light on Hexaquarks
Mikhail Bashkanov
2
Total cross section pn d00
“d* resonance” 70 MeV NN*(1440) P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011
3
𝑑 ∗ (2380) dibaryon 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 I(Jp) = 0(3+)
𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 u u u d d d Threshold I(Jp) = 0(3+) 80 MeV d* Δ Δ 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽
4
Dibaryon hadronic decays
PRL 106 (2011) PLB 721 (2013) 229 WASA data 𝑑 𝜋 0 𝜋 0 𝑑 𝜋 + 𝜋 − pn d*(2380) 𝑝𝑛 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − PRL 112 (2014) PRC 90, (2014) d* PRC 88 (2013) PLB 743 (2015) 325 d* d*
5
𝑑 ∗ (2380) decay branches 𝒅 ∗ decay channel Branching ratio, % 𝑝𝑛
12(3) 𝑑 𝜋 0 𝜋 0 14(1) 𝑑 𝜋 + 𝜋 − 23(2) 𝑝𝑛 𝜋 + 𝜋 − 30(5) 𝑝𝑛 𝜋 0 𝜋 0 12(2) 𝑝𝑝 𝜋 0 𝜋 − 6(1) 𝑛𝑛 𝜋 0 𝜋 + 𝑁𝑁𝜋 0(<9) Eur.Phys.J. A51 (2015) 7, 87
6
Molecule vs Hexaquark
7
𝑑 ∗ (2380) - Deltaron? L=0 Δ Δ see A. Gal, Phys.Lett. B769 (2017) 436 for details
8
Hidden color concept Hexaquark Deltaron
M. Bashkanov, Stanley J. Brodsky, H. Clement Phys.Lett. B727 (2013) F. Huang et al, Chin.Phys. C39 (2015) 7,
9
Deltaron vs Hexaquark L=0 Δ Δ ≈33% ≈66% 0.7 fm 0.9 fm 0.9 fm
F. Huang et al, Chin.Phys. C39 (2015) 7,
10
Deltaron vs Hexaquark ? ≈33% ≈66% ≈10% ≈90% 0.7 fm Δ L=2 Narrow width
Branching ratios Dalitz plots Δ Δ ≈90% ≈10% 𝑀 𝜋𝜋 , see Nucl.Phys. A958 (2017) F. Huang et al, Chin.Phys. C39 (2015) 7,
11
d* internal structure Hexaquark Molecule Diquark dominated
Meson assisted -dressed
12
𝑑 ∗ →𝑁𝑁𝜋 decay Molecular Picture, A. Gal, Phys.Lett. B769 (2017)
D. Arndt 𝑁Δ state has sizable 𝑁𝑁 decay branch: 𝑑 ∗ →𝑁𝑁𝜋 should be seen Hidden color picture/hexaquark Yubing Dong, Fei Huang, Pengnian Shen, Zongye Zhang Phys.Lett. B769 (2017) 223 𝑑 ∗ →𝑁𝑁𝜋 decay is tiny
13
𝑑 ∗ →𝑁𝑁𝜋 decay in experiment
𝑝𝑝→𝑝𝑛 𝜋 + 𝑝𝑝→𝑝𝑝 𝜋 0 Pure isovector (I=1) 𝑝𝑛→𝑝𝑝 𝜋 − 𝑝𝑛→𝑝𝑛 𝜋 0 Mixed (I=1& I=0) Predominantly isovector Interested in isoscalar part only 𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) Proton beam Deuteron target 𝑝𝑑→𝑝𝑝 𝜋 − + p spectator 𝑝𝑑→𝑝𝑝 𝜋 0 + n spectator
14
𝑑 ∗ →𝑁𝑁𝜋 decay in experiment
𝑁𝑁→𝑁𝑁𝜋 isoscalar cross section 𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) Wasa-at-Cosy arXiv: Systematical errors!!!! Same beam Same detector Same deuteron target Two protons in final state measured in the same kinematics Br( 𝑑 ∗ →𝑁𝑁𝜋)<9% - upper limit Likely to be close to 0
15
Nuclear matter at high density
p d* n Mikhail Bashkanov "Dibaryons"
16
The d ∗ (2380) in neutron stars - a new degree of freedom?
I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv: v1
17
𝑑 ∗ size Transition form factor Charge distribution Internal structure
* d*(2380) d Transition form factor Charge distribution Internal structure
18
d*(2380) in photoproduction?
𝜋 0 p 𝜋 0 d* d* d d d n 𝛾𝑑→𝑑 𝜋 0 𝜋 0 𝛾𝑑→𝑑 𝜋 0 𝜋 0 Conventional Background M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 𝑑 ∗ M. Guenther Master Thesis, Basel 2015 T. Ishikawa et al. Phys.Lett. B772 (2017) 398
19
The benchmark measurement
Newly installed Edinburgh polarimeter p d* d n Measure polarization of both proton and neutron ! Mikhail Bashkanov "Dibaryons"
20
Deuteron photodisintegration: beam asymmetry Σ
p Σ~ 𝐽=2 𝐵 𝐽 𝑃 𝐽 2 (𝑐𝑜𝑠Θ) PRC 26 (1982) 2358 d n
21
Deuteron photodisintegration: beam asymmetry Σ
p Σ~ 𝐽=2 𝐵 𝐽 𝑃 𝐽 2 (𝑐𝑜𝑠Θ) PRC 26 (1982) 2358 d n 𝑑 ∗ should be noticeable in 𝑃 6 2 H. Ikeda et al.Nucl. Phys. B 172 (1980) 509
22
Conclusion The very first dibaryon d*(2380) is established
Mass, Width, Quantum numbers Main decay branches Structure: Hexaquark vs Molecule? Medium Modifications? Neutron Stars?
23
* * 𝑑 ∗ (2380) Thank you
24
d*(2380) in photoproduction?
R. Gilman and F. Gross nucl-th/ (2001) d* p T. Kamae, T. Fujita Phys. Rev. Lett. 38, Feb 1977, 471 d n H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321 I(Jp) = 0(3+) 𝐌=𝟐.𝟑𝟖 𝐆𝐞𝐕
25
d*(2380) SU(3) multiplet Jp = 3+ * * 𝑑 ∗ (2380)
𝑀 𝑑 ∗ − 𝑀 Δ + 𝑀 Σ ∗ < 𝑀 𝑑 𝑠 ∗ ≤ 𝑀 Δ + 𝑀 Σ ∗ * 𝑑 𝑠 ∗ (2.53−2.60) * 𝑑 𝑠𝑠 ∗ (2.68−2.76) 𝑑 𝑠𝑠𝑠 ∗ (2.82−2.90)
26
Deltaron: the width quest
27
Deltaron: the with quest
2∗Δ(1232) width
28
Deltaron: the with quest
M Δ = 𝑀 𝑑 ∗ − 𝑞 Δ 2 The mass of the bound Δ in the Deltaron Δ momentum in the Deltaron M Δ = 𝑀 𝑑 ∗ 2 only if q Δ =0 q Δ =0 only if the size of the Deltaron is ∞ For R 𝑑 ∗ =0.9𝑓𝑚, Γ 𝑑 ∗ =2 Γ Δ =70 𝑀𝑒𝑉 see A. Gal, Phys.Lett. B769 (2017) 436 for details
29
𝑁𝑁→𝑁𝑁𝜋 isoscalar cross section
𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) pp→𝑝𝑝 𝜋 0 np→𝑝𝑝 𝜋 − Complete cancellation of Δ resonance in isoscalar case
30
Beam asymmetry M1 transition ( 𝟏 + ) or E2 transition ( 𝟐 + ) Δ 𝜋 p
E2/M1 ratio for the 𝛾𝑁→Δ T. Watabe et al. hep-ph 𝐸2 𝑀1 = 1 2 𝑘 𝑀 𝑁 𝑄 𝑧𝑧 𝑁Δ 𝜇 𝑁Δ R. Beck et al. (MAMI-A2) Phys.Rev. C61 (2000) Analysis of beam asymmetry 𝐸2 𝑀1 =2.5%
31
𝑑 ∗ and beam asymmetry Σ 𝑑 ∗ E2 transition ( 𝟐 + )
M3 transition ( 𝟑 + ) E4 transition ( 𝟒 + ) 𝑑 ∗ p d n H. Arenhoevel, M. Sanzone “Photodisintegration of the deuteron”
32
Experiment Target 𝜸 p 𝒏 Θ,𝜙,𝐸 p 𝚯 ′ ,𝝓′ 𝛾𝑑→𝑝 𝑛 Polarimeter
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.