Download presentation
Presentation is loading. Please wait.
1
Frequency and Phase Shifts
Section 7.4 Pre-Calculus AB Pre-AP/Dual, Revised ©2014 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
2
Transformation Graph Equation
Equation: y = A trig function (bx – h) + k or book’s equation: y = A trig function (bx – c) + d A is the amplitude a: vertically stretches by a factor of a, 1/a: Vertically compresses by a factor of 1/a –a: Reflects over the x-axis B is the period or frequency Period equation: 2π/b for sine and cosine, π/b for tangent B: horizontally compresses by a factor of 1/b 1/B: horizontally stretches by a factor of b –B: Reflects over the y-axis k is the vertical shift h is the horizontal shift or phase shift Phase Shift equation: h/b or c/b (x – h) shifts graph right (x + h) shifts graph left 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
3
7.3: Amplitude and Vertical Shifts
Example 1 Describe the transformation, y = 4 cost + 1 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
4
7.3: Amplitude and Vertical Shifts
Example 2 Describe the transformation, y = –1/2 sint – 2 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
5
7.3: Amplitude and Vertical Shifts
Your Turn Describe the transformation, y = 5cost + 3 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
6
7.3: Amplitude and Vertical Shifts
Example 3 Given 𝒚=−𝟒𝐬𝐢𝐧 𝟏 𝟐 𝒙+𝟏 +𝟑, identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
7
7.3: Amplitude and Vertical Shifts
Example 4 Given 𝒚=𝐬𝐢𝐧𝟐 𝒙+𝝅 −𝟏 identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
8
7.3: Amplitude and Vertical Shifts
Your Turn Given 𝒚=𝟐𝐜𝐨𝐬 𝟑𝒙−𝟒 −𝟏, identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
9
7.3: Amplitude and Vertical Shifts
Example 5 Given 𝒚=𝟐𝐭𝐚𝐧 𝟑𝒙− 𝝅 𝟐 −𝟏 identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
10
7.3: Amplitude and Vertical Shifts
Example 6 Given 𝒚=𝟓𝐬𝐞𝐜 𝟑𝒙+ 𝝅 𝟕 , identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
11
7.3: Amplitude and Vertical Shifts
Your Turn Given 𝒚=𝟑𝐬𝐞𝐜 𝒙+ 𝝅 𝟒 , identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
12
7.3: Amplitude and Vertical Shifts
Example 7 Given 𝒚=− 𝟏 𝟐 𝐭𝐚𝐧 −𝟑𝒙+ 𝝅 𝟔 , identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
13
7.3: Amplitude and Vertical Shifts
Your Turn Given 𝒚=−𝐜𝐨𝐭 𝟐𝒙+ 𝝅 𝟒 , identify amplitude, period, vertical shift, and phase shift for one period. Amplitude Period Vertical Shift Phase Shift 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
14
7.3: Amplitude and Vertical Shifts
Example 8 Write an equation using y = sin x where a = 2, period is π, phase shift is π/2 and vertical shift is up 1. 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
15
7.3: Amplitude and Vertical Shifts
Example 9 Write an equation using y = cos x where a = 3 reflected across the x-axis, period is 2π, phase shift is π/2 to the right and vertical shift is down 1. 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
16
7.3: Amplitude and Vertical Shifts
Example 10 Write an equation using y = tan x where a = 3, period is 4π, and phase shift is π/3 to the right. 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
17
7.3: Amplitude and Vertical Shifts
Your Turn Write an equation using y = cos x where a = 4, period is 2, and phase shift is 2/π to the right and one unit up 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
18
Transformation Graph Equation
A is the amplitude a: vertically stretches by a factor of a, 1/a: Vertically compresses by a factor of 1/a –a: Reflects over the x-axis B is the period or frequency Period equation: 2π/b for sine and cosine, π/b for tangent B: horizontally compresses by a factor of 1/b 1/B: horizontally stretches by a factor of b –B: Reflects over the y-axis k is the vertical shift h is the horizontal shift or phase shift Phase Shift equation: h/b or c/b (x – h) shifts graph right (x + h) shifts graph left 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
19
7.3: Amplitude and Vertical Shifts
Example 11 Describe the transformation of 𝒚=−𝟐𝐜𝐨𝐬 𝟑𝒙−𝝅 −𝟏 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
20
7.3: Amplitude and Vertical Shifts
Example 12 Describe the transformation of 𝒚= 𝟏 𝟒 𝐜𝐬𝐜 𝟐 𝟑 𝒙− 𝟑 𝟐 𝝅 +𝟑 2/23/ :01 AM 7.3: Amplitude and Vertical Shifts
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.