Presentation is loading. Please wait.

Presentation is loading. Please wait.

3.052 Nanomechanics of Materials and Biomaterials

Similar presentations


Presentation on theme: "3.052 Nanomechanics of Materials and Biomaterials"— Presentation transcript:

1 3.052 Nanomechanics of Materials and Biomaterials
LECTURE # 15 : • MOLECULAR MECHANICS OF CARTILAGE Prof. Christine Ortiz DMSE, RM Phone : (617) WWW :

2 Interactions Between Charged Surfaces in Liquids
Review : Lecture #13,14 Interactions Between Charged Surfaces in Liquids I. Charged Surfaces : formation mechanisms : (1) ionization or dissociation of surface chemical groups and (2) adsorption (or physical binding, VDW) of ions from solution onto a neutral surface II. Qualitative Aspects of the Counterion Electrical Double Layer : translational / rotational entropy which drives counterions away from the surface electrostatic attraction to fixed surface charge which drives counterions to the surface • repulsive force with decreasing D between charged surfaces comes from : overlap of counterion electrical double layers III. Quantitative Aspects of the Counterion Electrical Double Layer : • PARAMETERS : s= uniformly distributed surface charge density (C/m2) rx=counterion density or concentration at any point x within the gap between two surfaces (# counterions/m3) ro=r=ionic concentration in midplane (x=0) rs=ionic concentration at surfaces (x=±D/2) yx=electrical potential at any point x within the gap between two surfaces, yx=yoexp[-kx] where :k-1= DEBYE LENGTH P=P(D)planes=F(D)/unit area (N/m2) = mean osmotic pressure between two charged planes (no added electrolyte)

3 Interactions Between Charged Surfaces in Liquids
Review : Lecture #13,14 Interactions Between Charged Surfaces in Liquids P(D)=kBTro(D) P(D)=kBT[rs(D)-rs()] IV. The Electric Double Layer in the Presence of an Electrolyte (Dissociated Salt) : P(D)=kBT[ro(D)-ro()] F(D)PLANES=2eeok2yo2exp[-kD]=[2s2/eeo]exp[-kD] W(D)PLANES=2eeokyo2exp[-kD]=[2s2/keeo]exp[-kD] (per unit area) V. The DLVO Theory : P(D)=electrostatic + VDW

4 Structural Hierarchy and Function of
the Components of Articular Cartilage (*Buckwalter, et al., J. Bio. Chem.,1982)

5 Structure of Aggrecan HA
(Rotary Shadowing EM : Hardingham, et al. FASEB J Mörgelin, et al. Biophys. Chem ) HA - b n=25.5

6 TMAFM Images of Sparse Monolayer of Fetal Bovine Articular Cartilage Aggrecan Monomers (A1A1D1D1) in Air on APS-Mica (Ng, et al. Polym. Prepr. 2003) amplitude height

7 TMAFM Images of Sparse Monolayer of Cartilage Aggrecan Monomers (A1A1D1D1) in Air on APS-Mica
(Ng, et al. Polym. Prepr. 2003) 1.1 nm 50 nm 50 nm 0.6 nm FETAL MATURE 0 nm

8 TMAFM Amplitude Images of Dense Monolayer of Fetal Bovine Articular Cartilage Aggrecan Monomers (A1A1D1D1) in Air on APS-Mica (Ng, et al. Polym. Prepr. 2003)

9 (Seog, et al. Macromolecules 2002)
Nanomechanics..... (Seog, et al. Macromolecules 2002) ~32 nm

10 FTOTAL = F D FELECTROSTATIC + FSTERIC + FVDW + FHYDRATION
microfabricated cantilever (Seog, et al. Macromolecules 2002) Chemical HRFS : Sulfate-Functionalized Probe Tip versus GAG Brush Surface - Rtip~25 nm - - - + - - + - - + - - - - + - - - - + + - - - - + + - - - - - - - + + + - + + + + s1(-) + + + - + - + + + tip diffuse counterion double layer - + + - + + + + Si3N4 probe tip : Au-coated + + + + + + + + + + + + + + + - + + - + - + + + + + + D + - + - + bulk concentration of electrolyte ions + - - + - + - - - + - + + + - + FTOTAL = FELECTROSTATIC + FSTERIC + FVDW + FHYDRATION + - + - + + + + surface diffuse counterion double layer + + + - + + + + + - + - + + + + + + + + + + + + + + + + - - - - + - - - + + - + - - + - - + + + - + - - - - + - - + - - - - - + - - - - - end-grafted CS-GAG brush on a planar surface + - - - - + s2(-) + - - + - + - - - + + - + + + - + - + - + - - + + + - - - - + - - + - + - - - - - - + - + - + - - + - + - - - + + - - + - - + + - + - - - + + - + - - - + - + - - - - - - Si + + + - + - + CH3 SAM Au-coated silicon chip s~6.5 nm

11 A UNIVERSAL SCIENTIFIC PROBLEM :
Deconvoluting the Total Intersurface Interaction Si Au F chemically functionalized probe tip Lo Lo

12 SULFATE-Functionalized Probe Tip versus GAG Surface
at pH=5.6 as a Function of NaCl Ionic Strength AVERAGED CURVES ON APPROACH (Seog, et al. Macromolecules 2002) Lcontour(GAG) A M B 0.001M C 0.01M D 0.1M E 1M A B C D E

13 3 Theoretical Models of Electrostatic Double Layer Forces
SURFACE CHARGE (Parsegian, et al. J. Theor. Bio. 1971 Butt, et al. Biophys. J. 1991) VOLUME CHARGE (Ohshima, et al. Coll. Polym. Sci. 1999) ROD LIKE CHARGE (Dean, et al. Langmuir 2003) Fixed : eW,, k-1, s1, s2 , RHEMI Fixed : eW,, k-1, s1, rVOLUME , RHEMI Fit : h Fixed : eW,, k-1, s1, rROD, s, RHEMI Fit : h,w ● How do molecular level changes in charge distribution inside polyelectrolyte brushes affect electrostatic double layer forces ?

14 Comparison of Electrostatic Models to HRFS Data: Sulfate Probe Tip vs
Comparison of Electrostatic Models to HRFS Data: Sulfate Probe Tip vs. CS-GAG Brush (0.1M NaCl) (Dean and Seog, et al. Langmuir 2003) 0.5 HRFS Data stip 20 RHEMI 0.6 rROD 0.4 D 0.5 w s 0.4 0.3 h Force/Radius (mN/m) Stress (MPa) Force (nN) 0.3 0.2 Surface Charge Model Charged Rod Model Best-fit h=25nm Best-fit w= 2nm 0.2 0.1 Volume Charge Model Best-fit h=20nm 0.1 0.0 0.0 10 20 30 Distance (nm)

15 GAG VERSUS GAG : FTOTAL = F D FELECTROSTATIC + FSTERIC + FVDW
(Seog, et al. Physics Today 2002) F microfabricated cantilever GAG VERSUS GAG : Si3N4 probe tip + Au-coated + end-grafted CS-GAG brush + methyl SAM : C12H25-SH - Rtip <150 nm - + + + - - + - + - + - + - - + - - - - + + - - - - - - - + - - - - - - - - + - + + + - - - - + - + + + s(-) + - + - - + - + + - - + + - - - + - - - - + - - - - - - + + - + - + - - + + - tip diffuse counterion double layer - - - - + + + + + + + + + + + + + - + + + + + - - + + + + + + + D + - + - + bulk concentration of electrolyte ions + - - + - + - - - + - + + + - FTOTAL = FELECTROSTATIC + FSTERIC + FVDW + FHYDRATION + + - + - + + + + surface diffuse counterion double layer + + + - + + + + + + + + - - + + + + + + + + + + + + + + - - + - - + + - - - - + - + - - - + - + - + + - - - - + - + - - - - + - - - - - end-grafted CS-GAG brush on a planar surface - + + - - - + - - - + + s(-) - - + - + - + + - - + - + - - + + - - + + + - - + - + - - - - - - - + - + + - - - + - - + - - - + + - + - + - - + - + - - - - + + - + - + - + + - - - - - - - - + + + - + - + methyl SAM : C12H25-SH Au-coated silicon chip Si s~6.5 nm

16 GAG-Modified Probe Tip versus GAG-Modified Surface
at pH=5.6 , IS=0.0001M (Seog, et al. Physics Today 2002) A GAG vs GAG B Sulfate vs. GAG C Hydroxy vs. GAG A B Electrically coated tip: immerse tip into GAG solution; 0.15 V DC applied to tip w.r.t platinum electrode for 9 hrs. The current was maintained below 50 nA to prevent electrolysis, which would change bath pH and prevent binding C

17 Effect of Molecular Deformation Mechanism on Opposing Polyelectrolyte Brushes, 0.1 M NaCl (Dean, et al. Langmuir 2003) GAG 0.5 D 0.6 h 0.4 Both Collapse to Volume Charge Model at Small D 0.5 Interdigitated Rod Model GAG 0.3 0.4 Force (nN) Stress (MPa) D 0.3 0.2 h h’ 0.2 0.1 Compressed / Excluded Rod Model 0.1 0.0 0.0 10 20 30 40 50 60 70 80 Distance (nm) STERIC FORCES : configurational, mixing, and translational entropies DEHYDRATION FORCES : enthalpic disruption of supramolecular structure (e.g., due to GAG-water hydrogen bonding). HYDRODYNAMICS.


Download ppt "3.052 Nanomechanics of Materials and Biomaterials"

Similar presentations


Ads by Google