Presentation is loading. Please wait.

Presentation is loading. Please wait.

UMED District Plan Update

Similar presentations

Presentation on theme: "UMED District Plan Update"— Presentation transcript:

1 UMED District Plan Update
ML&P Meeting August 27, 2013 Municipality of Anchorage Community Development Department Kristine Bunnell, Project Manager Carol Wong, Manager, Long Range Planning Page & Turnbull with RSA Engineering Dick Armstrong, PE, CEM Kittelson & Associates HMS Strategic Economics

2 UMED District Plan Update | What and Why Now?
STAKEHOLDER-DESIRED PLAN Designated as a Major Employment Center in Anchorage 2020 District Planning and Zoning State Grant Application No Federal or Muni Funds GRANT REQUIREMENTS Community Involvement Plan UMED District Plan Update Parking Utilization Study Energy Cogeneration Study

3 UMED Cogen Study Purpose
Validate UAA/MLP 2008 Plan and Update Centralized 10 megawatt (MW) CHP Gas Turbine Plant Utilidors to distribute waste heat: $55M just UAA & PAMC, $63M with UAA Dorms Location for a centralized plant – UAA or APU near PAMC Limited distribution to only UAA, APU and PAMC Evaluate Alternate Solutions of Distributed CHP Systems at: ● PAMC ● UAA ● UAA Dorms ● MYC ● SCF ● ANTHC ● APU ● API Define Major Constraints: Tariff relief for demand charges Code restrictions ML&P safety concerns Enstar concerns

Electricity and Heat production that is on-site or close to the load center and is interconnected to the utility distribution system.

5 WHAT IS A MICRO TURBINE? Combustion chamber Exhaust output Recuperator Fuel injector Air bearings Compressor Generator Air intake Cooling fins Turbine In layman's terms, “A miniature jet engine that runs at speeds up to 96,000 rpm and generates electricity and heat. Electrical Power Output 30 kW to 100 MW range Highly Reliable Ultra Low Emissions Multiple Fuels natural gas, propane diesel, biodiesel, methane/biomass/liquid fuels Simple/Cost Effective Design Very Low Maintenance

Traditional Piston Engine Ultra low emissions Local air permits and exhaust cleanup required Low maintenance – Six hours per year High maintenance – Oil, Coolant, Injectors-160 scheduled maintenance periods in 5 years On board digital electronics External controls without power electronics Integrated utility protection & synchronizing Requires external relays & control equipment Lightweight & small footprint More than twice the weight & footprint


8 Equipment Basis of Analysis
Capstone Micro Turbines Used for Analysis 2 major suppliers analyzed Capstone: Represented locally Flex Energy: Not represented locally Capstone has 3 Size Offerings: 30 kW, 65 kW, 200 kW, Multiples Flex Energy has 250 kW, Multiples Capstone Fuels Selection: Liquid & Gas (diesel, jet fuel, propane, NG) Flex Energy: Only NG, Propane Capstone has Direct Drive, 1 Moving Part, Air Bearings, Low Maintenance Flex Energy Requires Gearbox, Lubricants, More Maintenance Both Allow Dual Mode – Standalone or Grid Connected Flex Energy Requires 8 hrs Maintenance/year, Capstone Requires 6 Both Have Extremely Low NOX Emissions Due to Lean Fuel Mixture

9 No Heat Exchanger Installed C200’s Cascaded for 1,000 kW total
Capstone C30 No Heat Exchanger Installed C200’s Cascaded for 1,000 kW total 10’ x 30’ Exterior Installation at Cell Tower in Alaska

10 Example CHP Alaska Locations
Remote cell towers off grid Portage: 1 C30 Homer: 1 C30 Tazlina: 1 C30 H2 Oasis Water Park 1 C65 and 3 C60s Miscellaneous other locations Alyeska Prince Hotel in Girdwood Fairbanks: 1 C65 Montana creek DOT station (Mile 82 Steese Highway) 1 C65 Kenai Peninsula (Fort Beluga, Kenai, Happy Valley, Nikiski, Ninilchik): 5 C30’s, 4 C60’s, 14 C65’s, 4 C200’s, (this fall 2013: 2 C1000’s) Shemya: 7 C65’s Being Installed Now Oliktok Point: 4 C30’s (Diesel) US DOE Atmos. Radiation Meas. Program

11 Normal (Base) Mode

12 Potential Roadblocks to Implementation
ML&P Interconnection requirements (113) state that cogen units cannot connect to the user’s load, but must be sold back to utility. CEA allows the customer to connect a CHP unit on the load side of the meter which reduces their demand charges. Financial incentive to use CHP is significanty reduced if customer cannot reduce his demand charges Power Back Feed to Grid Concerns Interconnecting disconnect device allows for non-utility generation lockout Utility Power Quality Concerns Protective relays are required to continuously analyzed both the load and the grid to isolate non-utility generation in the event of system disturbances. Finding Room Inside Existing or Outside Building for Installation Code Restrictions: NFPA, Building Codes, Utility Restrictions

13 Code Restrictions for Use of Micro-Turbines (Sample)
NFPA 37: Std for Installation & Use of Gas Turbines Adopted by reference in 2012 IFGC 616 Adopted by reference in 2012 IMC 915 Key Provisions (not all inclusive) Locate where accessible for fire fighters – NFPA 37, No combustible materials stored in room – NFPA 37, Interior walls, floors, ceilings must be 1-hour construction, except top floor – NFPA 37, Ventilation adequate to prevent build up of gasses – NFPA 37, Attached engine rooms need 1-hr wall where attached to structures – NFPA 37, Noncombustible construction on detached structure – NFPA 37, Keep detached structures 5’ from main building – NFPA 37, 4.1.4 Natural gas supplies, piping, gas trains, regulators – NFPA37, 5.1 Exhaust systems – NFPA 37, Chapter 8 Controls & Instrumentation of turbines – NFPA, Chapter 9.3 NFPA Chapter 11 IEEE 1547: Interconnection of Distributed Resources w/grid Adopted provisions by serving utility Includes protective relays, utility manual disconnects

14 ML&P Issues Rates for purchase of Energy:
Non-Firm Power Rate $ /kWh ML&P Interconnection Guidelines 113 Class C Facilities Non-utility generator installations from 100 kVA to 1,000 kVA, where the stiffness ratio is at least 30, are Class C installations. The larger capacity of Class C facilities (relative to Classes A and B), and the consequent potential to island large sections of the ML&P electric system is of much greater concern. In addition, Class C installations can significantly influence primary feeder devices and operations. Class C installations shall have the producer’s non-utility generation equipment connected directly to the ML&P electric power system. Class C installations shall not serve any of the producer’s load(s) normally served by ML&P. CEA Interconnection Guidelines 163 Class C Facilities Non-utility generator installations of 100 kVA to 1,000 kVA, where the stiffness ratio is at least 30, are identified as Class C installations. Given the larger capacity of Class C facilities (relative to Classes A and B), the potential to island large sections of the Chugach electric system is of much greater concern. In addition, Class C installations can significantly influence primary feeder devices and operations. Accordingly, the probability of interference with Chugach consumers and system equipment is high enough to necessitate more stringent interconnection requirements.

15 ML&P Does NOT Permit Connecting CHP to Building Load

16 CEA Allows Connecting Cogen to Building Load

17 Demand Savings – Single 200 kW CHP
200 kW CHP could reduce demand charges by $ 32,736/year

18 Demand Savings – Single 200 kW CHP
200 kW CHP could reduce demand charges by $ 36,816/year

19 Sample Office Building Assumptions for Economic Analysis
Enstar G4 rate – Natural Gas $360/mo. customer charge $.6306/ccf ML&P Schedule 22 rate - Electric $44.15/mo. customer charge Demand $13.64/kW $.07053/kWh 200 kW CHP Dual Mode Operation Heat Recovery Module Electric Adsorption Chiller, 1.3 COP $445,000 Installed Cost Hydronic Heating, Electric Cooling 8760 hrs/year Electricity Generation Base Electric Load Exceeds CHP Capacity Electric output is fully utilized CHP is Connected on Load Side of Meter to Reduce Demand Charges

20 Sample Office Building
Result Summary


22 UMED CHP Stakeholder Options
Do nothing Base load CHPs to feed heat & power to building.** Size CHPs to feed heat, power to ML&P grid – no demand reduction CHPs in buildings that can be totally off grid via backup generation, or ML&P backup with open transition transfer switch. Pay 12 months demand at ($13.64/kW to $15.64/kW) if using ML&P for >15 minutes. Carry the entire facility campus using CHP generators, interconnected using smart grid to meet all thermal loads, and maximize efficiency by turning down lightly loaded units. Provide backup using diesel micro- turbine or existing diesel recip generators. Completely sever connection to ML&P, or work out a mutual backup agreement. Pick 1-2 buildings per stakeholder to test a proof of concept CHP to determine if they integrate to the system, work as desired and save as expected.** ** Requires Interconnection Requirements Section 113 relief from ML&P

23 Recommendations Request that ML&P remove Interconnection Requirement Section that prohibits demand reduction and requires selling all power back to ML&P. Permit connection of CHP on customer side of meter. Size distributed CHP units to pick up thermal loads, use power as base load and demand reduction. Priority locate CHP units in high thermal load buildings. Consider smart grid variable loading in primary metered locations. Use steam micro-turbines if high pressure steam (150 psi) is available to be reduced to 15 psi.

24 Stakeholder Feedback Most Want to Try a Proof of Concept CHP Unit
Example Potential POC Locations: Native Hospital mechanical room using steam micro turbine SCF data room UAA Integrated Science building UAA Sports Complex UAA Energy Modules APU Mosley Pool Building API boiler room MYC boiler room PAMC boiler room Most Prefer to Base Load CHP, Sized to Pick up Thermal Load All Would Prefer to Continue Service with ML&P All Want to See Relief on Connection Requirement to Reduce Demand Some Would Like to Use Smart Grid Behind Primary Metered Grid

Download ppt "UMED District Plan Update"

Similar presentations

Ads by Google