Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ignacy Sawicki CEICO, Institute of Physics, Prague

Similar presentations


Presentation on theme: "Ignacy Sawicki CEICO, Institute of Physics, Prague"β€” Presentation transcript:

1 Ignacy Sawicki CEICO, Institute of Physics, Prague
Cosmology in the Time of Dark Energy Lecture 2 Ignacy Sawicki CEICO, Institute of Physics, Prague ceico

2 Previously on… Acceleration is there under weak assumptions
Image credit: NASA and ESA Acceleration is there under weak assumptions C.c. or not c.c.? Degeneracy between DM and DE 𝑀 not observable, only 𝐻 𝑧 physical Today: inhomogeities tell you about the theory

3 The background is the playground
SDSS/BOSS Planck (2015)

4 Linear Theory: Superposition
How to Test Gravity? Newtonian gravity Continuous media: βˆ‡ 2 Ξ¦ 𝑁 =βˆ’4πœ‹ 𝐺 𝑁 𝜌 Ξ¦ N π‘₯ =∫ 𝑑 3 π‘₯ β€² 𝜌 π‘₯ β€² π‘₯βˆ’ π‘₯ β€² Spherical symmetry: Ξ¦ 𝑁 =βˆ’ 𝐺𝑀 π‘Ÿ π‘Ÿ =βˆ’βˆ‡ Ξ¦ 𝑁 Closed Orbits Linear Theory: Superposition

5 How to Test Gravity? General Relativity: Schwarzschild unique* spherical vacuum solution Weak field ( Ξ¦ 𝑁 β‰ͺ1): 𝑔 00 β‰ˆβˆ’ 1βˆ’2 Ξ¦ 𝑁 +2 Ξ¦ 𝑁 2 𝑔 𝑖𝑗 = 1+2 Ξ¦ 𝑁 𝛿 𝑖𝑗 Geodesic motion Massive: 𝑒 𝜈 βˆ‡ 𝜈 𝑒 πœ‡ =0 (1,0,0,0) accelerated by 𝑔 00 Null: π‘˜ 𝜈 βˆ‡ 𝜈 π‘˜ πœ‡ =0 (1,1,0,0) accelerated by 𝑔 00 , 𝑔 𝑖𝑗

6 How to Test Gravity? PPN Extension Weak field ( Ξ¦ 𝑁 β‰ͺ1):
Will (1971), Norvedt (1972) How to Test Gravity? Weak field ( Ξ¦ 𝑁 β‰ͺ1): 𝑔 00 =βˆ’ 1βˆ’2 Ξ¦ 𝑁 +2𝛽 Ξ¦ 𝑁 2 𝑔 𝑖𝑗 = 1+2 𝛾Φ 𝑁 𝛿 𝑖𝑗 PPN Extension Lensing of light Ξ”πœƒ=2 1+𝛾 𝐺𝑀 𝑏 Orbits 𝐺𝑀 π‘Ÿ π›Ύβˆ’1< 2.1Β±2.3 β‹… 10 βˆ’5

7 What do we know about gravity?
Baker, Psaltis, Skordis (2015) Chart shows curvature and potential All our tests are in coloured regions. Have tested gravity to 1 in 10^5 there (PPN formalism of Will etc) Know nothing much about extremely low curvatures: cosmology allows us to probe these PPN was for isolated and static spherical bodies. Now have FRW: time dependent. Need to redo

8 Inhomogeneities 10 metric components Origin of inhomogeneities
d 𝑠 2 =βˆ’ 1+2Ξ¨ π‘₯,𝑑 d 𝑑 2 + 𝐡 𝑖 π‘₯,𝑑 d𝑑d π‘₯ 𝑖 + + π‘Ž 2 𝑑 1βˆ’2Ξ¦(π‘₯,𝑑) 𝛿 𝑖𝑗 + β„Ž 𝑖𝑗 (π‘₯,𝑑) d π‘₯ 𝑖 d π‘₯ 𝑗 10 metric components 4 removed by diffeomorphism invariance (gauge choice; here Newtonian) β„Ž πœ‡πœˆ β†’ β„Ž πœ‡πœˆ + πœ• (πœ‡ πœ‰ 𝜈) 2 tensors β„Ž 𝑖𝑗 – real dynamical d.o.f. – gravitational waves 2 vector polarisations 𝐡 𝑖 – frame dragging: Einstein eqs constraints, decay without source (e.g. cosmic strings) 2 scalars Ξ¦ and Ξ¨: Einstein eqs constraints. Dynamics from EMT Origin of inhomogeneities Inflaton creates FRW background which can carry fluctuations (scalar) Exponential expansion leads to universal solution for scalar and tensor modes CMB implies amplitude of scalar fluctuations √ Ξ” 𝜁 2 ∼ 10 βˆ’5 , tensors much less Evolution then driven by theory of gravity

9 The Perturbed FLRW Lightcone
πœ’ 𝑧 𝑑

10 GR/Ξ›CDM: Scalars sourced by matter
3 𝐻 2 =8πœ‹πΊπœŒ Einstein: π‘˜ 2 Ξ¦=4πœ‹πΊπœŒ 𝛿+3π»πœŒπ‘£ Ξ¨βˆ’Ξ¦=8πœ‹πΊπœŽ Matter Conservation 𝛿 +2𝐻𝛿= π‘˜ 2 Ξ¨β‰ˆ 3 2 𝐻 2 Ξ© π‘š 𝛿 π‘˜ 2 Ξ¨+Ξ¦ =3 𝐻 2 Ξ© π‘š 𝛿

11 Matter Power Spectrum 𝜁𝜁 ∼ Ξ” 𝜁 2 Adiabatic Transfer Fn: 𝛿(π‘Ž)
DES (2015) 𝜁𝜁 ∼ Ξ” 𝜁 2 Adiabatic Transfer Fn: 𝛿(π‘Ž) Ξ” 2 = π‘˜ 3 𝑃(π‘˜) 𝛿(π‘₯)𝛿(π‘₯) 8 = 𝜎 8 2 π‘˜ 2 Ξ¦= π‘˜ 2 Ξ¨= 𝐻 2 Ξ© π‘š 𝛿

12 β€œModify Gravity” Einstein: βˆ‡ 2 Ξ¦=βˆ’4πœ‹πΊ πœ‡ πœ‚ 𝜌 𝛿+3π»πœŒπ‘£ πœ‚Ξ¨βˆ’Ξ¦=8πœ‹πΊπœŽβ‰ˆ0 Matter Conservation 𝛿 +2𝐻𝛿= π‘˜ 2 Ξ¨=4πœ‹πΊπœ‡πœŒπ›Ώ π‘˜ 2 Ξ¨+Ξ¦ =4πœ‹πΊπœŒ 1+πœ‚ πœ‡π›Ώ c.f. 𝛾 PPN

13 Observables in the Late Universe

14 Massive Probes: Galaxy Surveys
SDSS/BOSS Determine position and redshift of galaxies (and type) Pixelise and count deviations from average Ξ” 𝒏,𝑧 ≑ 𝑁 𝒏,𝑧 βˆ’ 𝑁 𝑧 𝑁 𝑧 What does it mean? ~ 3 million galaxies

15 Correlation Function 2500 deg2 up to 𝑧=0.7
SDSS/BOSS SDSS/BOSS DR10 thousand positions and spectra Bump: BAO same as CMB. Map out d_A Normalisation arbitrary: galaxy bias 2500 deg2 up to 𝑧=0.7

16 But bias 𝛿 𝑔 𝛿 𝑔 = 𝑏 2 𝛿 π‘š 𝛿 π‘š +β‹―

17 Galaxies Redistributed
𝜌 𝒙 obs d 𝑉 obs = d𝑁 gal =𝜌 𝒙 d𝑉 𝜌 𝑧 +π›ΏπœŒ 𝒏,𝑧 𝜌 𝑧 d 𝑉 obs = 𝜌 𝑧 +π›ΏπœŒ 𝒏 , 𝑧 𝜌 𝑧 d𝑉 𝜌 𝑧 +π›ΏπœŒ 𝒏,𝑧 𝜌 𝑧 βˆ’ 𝜌 ,𝑧 𝛿𝑧 = 1+𝛿 𝒏 , 𝑧 d𝑉 d 𝑉 obs Ξ” 𝒏,𝑧 =𝛿 𝒏 , 𝑧 + d𝑉 d 𝑉 obs βˆ’1βˆ’ 𝜌 ,𝑧 𝜌 𝑧 𝛿𝑧 Ξ” 𝒏,𝑧 =𝛿 𝒏 , 𝑧 + 𝛿𝑉 𝑉 βˆ’ 3𝛿𝑧 1+ 𝑧

18 Effects of Metric Fluctuations
d 𝑠 2 = π‘Ž 2 (πœ‚) βˆ’(1+2Ξ¨)d πœ‚ 2 +(1βˆ’2Ξ¦)(d πœ’ 2 + πœ’ 2 d Ξ© 2 ) πœ•π‘‰ πœ• 𝑉 obs =1+ πœ•πœ’ πœ• πœ’ obs + πœ•Ξ© πœ• Ξ© obs 1+𝑧≑ 𝑒 πœ‡ π‘˜ πœ‡ S 𝑒 𝜈 π‘˜ 𝜈 O 𝑒 πœ‡ =(1βˆ’Ξ¦, 𝒗 ) πœ’ obs =πœ’ 𝑧 β‰ƒπœ’ 𝑧 + πœ’ ,𝑧 𝛿𝑧= =πœ’ 𝑧 + 𝛿𝑧 𝐻 𝑧 =π‘Ž( 𝑑 O )/π‘Ž( 𝑑 S ) 𝛿𝑧= dπœ’ Ξ¦ + Ξ¨ 𝒏 β‹… 𝒗 ​ S + Ξ¦ S + Ξ¨ S + βˆ’ 𝒏 β‹… 𝒗 ​ O βˆ’ Ξ¦ O βˆ’ Ξ¨ O πœ• πœ’ obs πœ•πœ’ ≃1+ 1 𝐻 πœ• πœ’ 𝒏 β‹… 𝒗 + 𝐻 𝐻 2 𝒏 β‹… 𝒗 Redshift perturbation, 𝛿𝑧 Volume perturbation, 𝛿𝑉

19 What Counting Measures
Bonvin & Durrer (2011) Physical counts Ξ” g 𝒏,𝑧 = 𝛿 𝑔 𝒏 , 𝑧 βˆ’2Ξ¦+Ξ¨+ + 1 𝐻 Ξ¦ βˆ’ πœ• πœ’ 𝒏 β‹… 𝒗 + Redshift-space distortions + 𝐻 𝐻 πœ’ S 𝐻 Ξ¨ S + 𝒗 β‹… 𝒏 S + 0 πœ’ S dπœ’ Ξ¦ + Ξ¨ Doppler + ISW Convergence πœ… + 1 πœ’ S 0 πœ’ S dπœ’ 2βˆ’ πœ’ 𝑆 βˆ’πœ’ πœ’ 𝛻 βŠ₯ 2 (Ξ¦+Ξ¨) Shapiro + Shear

20 Relative Importance Galaxy correlations Ξ›CDM, 𝑙=20
Bonvin & Durrer (2011) Galaxy correlations Ξ›CDM, 𝑙=20

21 Redshift-Space Distortions
Kaiser (1985) 𝛿 𝑔 𝑧 = 𝛿 𝑔 βˆ’ 1 𝐻 𝑛 𝑖 πœ• 𝑖 ( 𝑛 𝑗 𝑣 𝑗 ) πœƒ π‘˜ 𝑛 𝛿 𝑔 𝑧 𝛿 𝑔 𝑧 = 𝑏 2 𝛿 π‘š 𝛿 π‘š βˆ’ 1 𝐻 πœ‡ 2 𝑏 𝛿 π‘š πœƒ 𝑔 𝐻 2 πœ‡ 4 πœƒ 𝑔 πœƒ 𝑔 πœ‡β‰‘ cos πœƒ Real space Redshift space πœƒ= πœ• 𝑖 𝑣 𝑖 𝛿 π‘š ≑𝐻𝑓 𝛿 π‘š WEP: 𝑣 𝑖 𝑔 = 𝑣 𝑖 π‘š = πœ• 𝑖 Ξ¨ Energy conservation: 𝛿 π‘š + πœƒ π‘š β‰ˆ0 𝛿 𝑔 𝑧 𝛿 𝑔 𝑧 = 𝑏 2 βˆ’ 1 𝐻 πœ‡ 2 𝑏𝑓+ 1 𝐻 2 πœ‡ 4 𝑓 2 𝜎 8 2 Extract 𝑓 𝜎 8 (which actually is πœƒ 𝑔 )

22 Redshift-Space Distortions
Real space Redshift space Samushia et al. (2013)/BOSS SDSS/BOSS DR10

23 Growth Rate, 𝑓 𝜎 8 Planck 2018

24 Caveat Emptor Bose et al. (2017)

25 Massless Probes: Cosmic Shear

26 Weak Lensing d 𝑠 2 =βˆ’(1+2Ξ¨)d 𝑑 2 + π‘Ž 2 (𝑑) (1βˆ’2Ξ¦)(d πœ’ 2 + πœ’ 2 d Ξ© 2 )
Following Bernardeau, Bonvin, Vernizzi (2009) d 𝑠 2 =βˆ’(1+2Ξ¨)d 𝑑 2 + π‘Ž 2 (𝑑) (1βˆ’2Ξ¦)(d πœ’ 2 + πœ’ 2 d Ξ© 2 ) πœ…: convergence 𝛾 𝑖 : shear πœ”: rotation, π’ͺ(2) 𝐽 𝑏 π‘Ž = 𝑑 A (1βˆ’πœ…)𝛿 𝑏 π‘Ž + 𝑑 A βˆ’ 𝛾 1 βˆ’ 𝛾 2 βˆ’πœ” βˆ’ 𝛾 2 +πœ” 𝛾 1 M. White 𝛾 1 = dπœ’ πœ’ S βˆ’πœ’ πœ’ πœ• 𝑖 πœ• 𝑗 Ξ¦+Ξ¨ 𝑒 1 𝑖 𝑒 1 𝑗 βˆ’ 𝑒 2 𝑖 𝑒 2 𝑗 𝛾 2 =2 dπœ’ πœ’ S βˆ’πœ’ πœ’ πœ• 𝑖 πœ• 𝑗 Ξ¦+Ξ¨ 𝑒 1 𝑖 𝑒 2 𝑗 Alwau 𝑑 A πœ…=βˆ’2 dπœ’ πœ’ S βˆ’πœ’ πœ’ 𝛻 βŠ₯ 2 Ξ¦+Ξ¨ βˆ’2 Ξ¦+Ξ¨ βˆ’2 Ξ¨ S πœ’ S + 𝑑 𝐴 ( πœ… v + πœ… ISW ) Only depends on lensing potential Ξ¦+Ξ¨

27 Weak Lensing Kilbinger (2014)

28 WL Sensitivity Kilbinger (2014)

29 WL: Current Status Troxel et al. (2018) 𝜎 8 Φ+Ψ

30 Latest Constraints on MG params

31 Can we remove dependence on ICs?
Amendola, Kunz, Motta, Saltas, IS (2013) Both lensing shear are growth rate as integrated quantities dependent on ICs 𝐴 𝑖𝑗 ∼ π‘‘πœ’ 𝐾 πœ’ βˆ‡ 2 (Ξ¦+Ξ¨) 𝑓 𝜎 8 ∼∫ βˆ‡ 2 Ξ¨ In GR, all 𝛿 π‘š , Ξ¦ and Ξ¨ related through constraint. One random variable In general – you don’t know. Take derivatives Lensing tomography Something similar with growth rate Form ratios of Ξ¦ and Ξ¨: measure πœ‚ in a model-independent manner

32 The Nearing Future

33

34 Projected DESI Expansion Rate

35 Measuring shear in next generation wide field cosmic shear surveys

36

37 The Takeaway Dark energy is not going away
Ξ›CDM fits, but if you are optimistic, there may be some tensions 𝐻 0 local vs global Growth rates? It could well end up being other physics Massive neutrinos can have similar effects Caveat emptor: All cosmological probes sensitive only to gravity; cannot say anything direct about composition Only in GR is DM overdensity the same as grav. potential


Download ppt "Ignacy Sawicki CEICO, Institute of Physics, Prague"

Similar presentations


Ads by Google