Download presentation
Presentation is loading. Please wait.
Published byΞΟ ΟΞΉΞΌΞ¬ΟΞ· ΞΞ±ΞΌΞ±ΟΞΊΞ·Ξ½ΟΟ Modified over 5 years ago
1
Ignacy Sawicki CEICO, Institute of Physics, Prague
Cosmology in the Time of Dark Energy Lecture 2 Ignacy Sawicki CEICO, Institute of Physics, Prague ceico
2
Previously on⦠Acceleration is there under weak assumptions
Image credit: NASA and ESA Acceleration is there under weak assumptions C.c. or not c.c.? Degeneracy between DM and DE π€ not observable, only π» π§ physical Today: inhomogeities tell you about the theory
3
The background is the playground
SDSS/BOSS Planck (2015)
4
Linear Theory: Superposition
How to Test Gravity? Newtonian gravity Continuous media: β 2 Ξ¦ π =β4π πΊ π π Ξ¦ N π₯ =β« π 3 π₯ β² π π₯ β² π₯β π₯ β² Spherical symmetry: Ξ¦ π =β πΊπ π π =ββ Ξ¦ π Closed Orbits Linear Theory: Superposition
5
How to Test Gravity? General Relativity: Schwarzschild unique* spherical vacuum solution Weak field ( Ξ¦ π βͺ1): π 00 ββ 1β2 Ξ¦ π +2 Ξ¦ π 2 π ππ = 1+2 Ξ¦ π πΏ ππ Geodesic motion Massive: π’ π β π π’ π =0 (1,0,0,0) accelerated by π 00 Null: π π β π π π =0 (1,1,0,0) accelerated by π 00 , π ππ
6
How to Test Gravity? PPN Extension Weak field ( Ξ¦ π βͺ1):
Will (1971), Norvedt (1972) How to Test Gravity? Weak field ( Ξ¦ π βͺ1): π 00 =β 1β2 Ξ¦ π +2π½ Ξ¦ π 2 π ππ = 1+2 πΎΞ¦ π πΏ ππ PPN Extension Lensing of light Ξπ=2 1+πΎ πΊπ π Orbits πΊπ π πΎβ1< 2.1Β±2.3 β
10 β5
7
What do we know about gravity?
Baker, Psaltis, Skordis (2015) Chart shows curvature and potential All our tests are in coloured regions. Have tested gravity to 1 in 10^5 there (PPN formalism of Will etc) Know nothing much about extremely low curvatures: cosmology allows us to probe these PPN was for isolated and static spherical bodies. Now have FRW: time dependent. Need to redo
8
Inhomogeneities 10 metric components Origin of inhomogeneities
d π 2 =β 1+2Ξ¨ π₯,π‘ d π‘ 2 + π΅ π π₯,π‘ dπ‘d π₯ π + + π 2 π‘ 1β2Ξ¦(π₯,π‘) πΏ ππ + β ππ (π₯,π‘) d π₯ π d π₯ π 10 metric components 4 removed by diffeomorphism invariance (gauge choice; here Newtonian) β ππ β β ππ + π (π π π) 2 tensors β ππ β real dynamical d.o.f. β gravitational waves 2 vector polarisations π΅ π β frame dragging: Einstein eqs constraints, decay without source (e.g. cosmic strings) 2 scalars Ξ¦ and Ξ¨: Einstein eqs constraints. Dynamics from EMT Origin of inhomogeneities Inflaton creates FRW background which can carry fluctuations (scalar) Exponential expansion leads to universal solution for scalar and tensor modes CMB implies amplitude of scalar fluctuations β Ξ π 2 βΌ 10 β5 , tensors much less Evolution then driven by theory of gravity
9
The Perturbed FLRW Lightcone
π π§ π‘
10
GR/ΞCDM: Scalars sourced by matter
3 π» 2 =8ππΊπ Einstein: π 2 Ξ¦=4ππΊπ πΏ+3π»ππ£ Ξ¨βΞ¦=8ππΊπ Matter Conservation πΏ +2π»πΏ= π 2 Ξ¨β 3 2 π» 2 Ξ© π πΏ π 2 Ξ¨+Ξ¦ =3 π» 2 Ξ© π πΏ
11
Matter Power Spectrum ππ βΌ Ξ π 2 Adiabatic Transfer Fn: πΏ(π)
DES (2015) ππ βΌ Ξ π 2 Adiabatic Transfer Fn: πΏ(π) Ξ 2 = π 3 π(π) πΏ(π₯)πΏ(π₯) 8 = π 8 2 π 2 Ξ¦= π 2 Ξ¨= π» 2 Ξ© π πΏ
12
βModify Gravityβ Einstein: β 2 Ξ¦=β4ππΊ π π π πΏ+3π»ππ£ πΞ¨βΞ¦=8ππΊπβ0 Matter Conservation πΏ +2π»πΏ= π 2 Ξ¨=4ππΊπππΏ π 2 Ξ¨+Ξ¦ =4ππΊπ 1+π ππΏ c.f. πΎ PPN
13
Observables in the Late Universe
14
Massive Probes: Galaxy Surveys
SDSS/BOSS Determine position and redshift of galaxies (and type) Pixelise and count deviations from average Ξ π,π§ β‘ π π,π§ β π π§ π π§ What does it mean? ~ 3 million galaxies
15
Correlation Function 2500 deg2 up to π§=0.7
SDSS/BOSS SDSS/BOSS DR10 thousand positions and spectra Bump: BAO same as CMB. Map out d_A Normalisation arbitrary: galaxy bias 2500 deg2 up to π§=0.7
16
But bias πΏ π πΏ π = π 2 πΏ π πΏ π +β―
17
Galaxies Redistributed
π π obs d π obs = dπ gal =π π dπ π π§ +πΏπ π,π§ π π§ d π obs = π π§ +πΏπ π , π§ π π§ dπ π π§ +πΏπ π,π§ π π§ β π ,π§ πΏπ§ = 1+πΏ π , π§ dπ d π obs Ξ π,π§ =πΏ π , π§ + dπ d π obs β1β π ,π§ π π§ πΏπ§ Ξ π,π§ =πΏ π , π§ + πΏπ π β 3πΏπ§ 1+ π§
18
Effects of Metric Fluctuations
d π 2 = π 2 (π) β(1+2Ξ¨)d π 2 +(1β2Ξ¦)(d π 2 + π 2 d Ξ© 2 ) ππ π π obs =1+ ππ π π obs + πΞ© π Ξ© obs 1+π§β‘ π’ π π π S π’ π π π O π’ π =(1βΞ¦, π ) π obs =π π§ βπ π§ + π ,π§ πΏπ§= =π π§ + πΏπ§ π» π§ =π( π‘ O )/π( π‘ S ) πΏπ§= dπ Ξ¦ + Ξ¨ π β
π β S + Ξ¦ S + Ξ¨ S + β π β
π β O β Ξ¦ O β Ξ¨ O π π obs ππ β1+ 1 π» π π π β
π + π» π» 2 π β
π Redshift perturbation, πΏπ§ Volume perturbation, πΏπ
19
What Counting Measures
Bonvin & Durrer (2011) Physical counts Ξ g π,π§ = πΏ π π , π§ β2Ξ¦+Ξ¨+ + 1 π» Ξ¦ β π π π β
π + Redshift-space distortions + π» π» π S π» Ξ¨ S + π β
π S + 0 π S dπ Ξ¦ + Ξ¨ Doppler + ISW Convergence π
+ 1 π S 0 π S dπ 2β π π βπ π π» β₯ 2 (Ξ¦+Ξ¨) Shapiro + Shear
20
Relative Importance Galaxy correlations ΞCDM, π=20
Bonvin & Durrer (2011) Galaxy correlations ΞCDM, π=20
21
Redshift-Space Distortions
Kaiser (1985) πΏ π π§ = πΏ π β 1 π» π π π π ( π π π£ π ) π π π πΏ π π§ πΏ π π§ = π 2 πΏ π πΏ π β 1 π» π 2 π πΏ π π π π» 2 π 4 π π π π πβ‘ cos π Real space Redshift space π= π π π£ π πΏ π β‘π»π πΏ π WEP: π£ π π = π£ π π = π π Ξ¨ Energy conservation: πΏ π + π π β0 πΏ π π§ πΏ π π§ = π 2 β 1 π» π 2 ππ+ 1 π» 2 π 4 π 2 π 8 2 Extract π π 8 (which actually is π π )
22
Redshift-Space Distortions
Real space Redshift space Samushia et al. (2013)/BOSS SDSS/BOSS DR10
23
Growth Rate, π π 8 Planck 2018
24
Caveat Emptor Bose et al. (2017)
25
Massless Probes: Cosmic Shear
26
Weak Lensing d π 2 =β(1+2Ξ¨)d π‘ 2 + π 2 (π‘) (1β2Ξ¦)(d π 2 + π 2 d Ξ© 2 )
Following Bernardeau, Bonvin, Vernizzi (2009) d π 2 =β(1+2Ξ¨)d π‘ 2 + π 2 (π‘) (1β2Ξ¦)(d π 2 + π 2 d Ξ© 2 ) π
: convergence πΎ π : shear π: rotation, πͺ(2) π½ π π = π A (1βπ
)πΏ π π + π A β πΎ 1 β πΎ 2 βπ β πΎ 2 +π πΎ 1 M. White πΎ 1 = dπ π S βπ π π π π π Ξ¦+Ξ¨ π 1 π π 1 π β π 2 π π 2 π πΎ 2 =2 dπ π S βπ π π π π π Ξ¦+Ξ¨ π 1 π π 2 π Alwau π A π
=β2 dπ π S βπ π π» β₯ 2 Ξ¦+Ξ¨ β2 Ξ¦+Ξ¨ β2 Ξ¨ S π S + π π΄ ( π
v + π
ISW ) Only depends on lensing potential Ξ¦+Ξ¨
27
Weak Lensing Kilbinger (2014)
28
WL Sensitivity Kilbinger (2014)
29
WL: Current Status Troxel et al. (2018) π 8 Ξ¦+Ξ¨
30
Latest Constraints on MG params
31
Can we remove dependence on ICs?
Amendola, Kunz, Motta, Saltas, IS (2013) Both lensing shear are growth rate as integrated quantities dependent on ICs π΄ ππ βΌ ππ πΎ π β 2 (Ξ¦+Ξ¨) π π 8 βΌβ« β 2 Ξ¨ In GR, all πΏ π , Ξ¦ and Ξ¨ related through constraint. One random variable In general β you donβt know. Take derivatives Lensing tomography Something similar with growth rate Form ratios of Ξ¦ and Ξ¨: measure π in a model-independent manner
32
The Nearing Future
34
Projected DESI Expansion Rate
35
Measuring shear in next generation wide field cosmic shear surveys
37
The Takeaway Dark energy is not going away
ΞCDM fits, but if you are optimistic, there may be some tensions π» 0 local vs global Growth rates? It could well end up being other physics Massive neutrinos can have similar effects Caveat emptor: All cosmological probes sensitive only to gravity; cannot say anything direct about composition Only in GR is DM overdensity the same as grav. potential
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.