Presentation is loading. Please wait.

Presentation is loading. Please wait.

Double angle formulae.

Similar presentations


Presentation on theme: "Double angle formulae."— Presentation transcript:

1 Double angle formulae

2 Trigonometry: Addition formulas
KUS objectives BAT derive the double angle formulas BAT use the addition formulae to solve ‘show that’ problems BAT use the addition formulae to solve equations Starter:

3 WB6 Trig Double Angle formulas: Find a formula for Sin2A using
Sin(A + B) ≡ SinACosB + CosASinB Sin(A + A) ≡ SinACosA + CosASinA Sin2A ≡ 2SinACosA 1 2 Sin2A ≡ SinACosA Sin4A ≡ 2Sin2ACos2A Sin2A ≡ 2SinACosA ÷ 2 2A  4A x 3 2A = 60 3Sin2A ≡ 6SinACosA Sin60 ≡ 2Sin30Cos30

4 Replace Cos2A with (1 – Sin2A) Replace Sin2A with (1 – Cos2A)
Trig Double Angle formulas: Find a formula for Cos 2A using Cos(A + B) ≡ CosACosB - SinASinB Cos(A + A) ≡ CosACosA - SinASinA Cos2A ≡ Co 𝑠 2 𝐴 −𝑆𝑖 𝑛 2 𝐴 Cos2A ≡ Co 𝑠 2 𝐴 −𝑆𝑖 𝑛 2 𝐴 Replace Cos2A with (1 – Sin2A) Replace Sin2A with (1 – Cos2A) Cos2A ≡ (1−𝑆𝑖 𝑛 2 𝐴)−𝑆𝑖 𝑛 2 𝐴 Cos2A ≡ Co 𝑠 2 𝐴 −(1 - Co 𝑠 2 𝐴) Cos2A ≡ 1 − 2𝑆𝑖 𝑛 2 𝐴 Cos2A ≡ 2Co 𝑠 2 𝐴 −1 Cos2A ≡ Co 𝑠 2 𝐴 −𝑆𝑖 𝑛 2 𝐴 ÷ 2 2A  4A x 3 2A = 60 Each has three possible answers

5 WB8 Trig Double Angle formulas: Find a formula for Tan 2A using
Tan (A + B) ≡ 𝑇𝑎𝑛𝐴+𝑇𝑎𝑛𝐵 1−𝑇𝑎𝑛𝐴𝑇𝑎𝑛𝐵 Tan (A + A) ≡ 𝑇𝑎𝑛𝐴+𝑇𝑎𝑛𝐴 1−𝑇𝑎𝑛𝐴𝑇𝑎𝑛𝐴 Tan 2A ≡ 2𝑇𝑎𝑛𝐴 1−𝑇𝑎 𝑛 2 𝐴 1 2 Tan 2A ≡ 𝑇𝑎𝑛𝐴 1−𝑇𝑎 𝑛 2 𝐴 Tan 60 ≡ 2𝑇𝑎𝑛30 1−𝑇𝑎 𝑛 2 30 Tan 2A ≡ 2𝑇𝑎𝑛𝐴 1−𝑇𝑎 𝑛 2 𝐴 ÷ 2 2A = 60 x 2 2A = A Tan A ≡ 2𝑇𝑎𝑛 𝐴 2 1−𝑇𝑎 𝑛 2 𝐴 2 2Tan 2A ≡ 4𝑇𝑎𝑛𝐴 1−𝑇𝑎 𝑛 2 𝐴

6 𝑆𝑖𝑛2𝜃≡2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑆𝑖𝑛𝜃≡2𝑠𝑖𝑛 𝜃 2 𝑐𝑜𝑠 𝜃 2 2𝑠𝑖𝑛 𝜃 2 𝑐𝑜𝑠 𝜃 2 𝑐𝑜𝑠𝜃 =𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
WB9: Rewrite the following as a single Trigonometric function: 2 sin 𝜃 2 cos 𝜃 2 cos 𝜃 𝑆𝑖𝑛2𝜃≡2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 2θ  θ 𝑆𝑖𝑛𝜃≡2𝑠𝑖𝑛 𝜃 2 𝑐𝑜𝑠 𝜃 2 2𝑠𝑖𝑛 𝜃 2 𝑐𝑜𝑠 𝜃 2 𝑐𝑜𝑠𝜃 Replace the first part =𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 Rewrite = 1 2 𝑠𝑖𝑛2𝜃

7 𝐶𝑜𝑠2𝜃≡2𝑐𝑜 𝑠 2 𝜃 −1 𝐶𝑜𝑠4𝜃≡2𝑐𝑜 𝑠 2 2𝜃 −1 1+𝑐𝑜𝑠4𝜃 = 1+(2𝑐𝑜 𝑠 2 2𝜃 −1)
WB10: Show that 1+ cos 4𝜃 can be written as 2 𝑐𝑜𝑠 2 2𝜃 𝐶𝑜𝑠2𝜃≡2𝑐𝑜 𝑠 2 𝜃 −1 Double the angle parts 𝐶𝑜𝑠4𝜃≡2𝑐𝑜 𝑠 2 2𝜃 −1 1+𝑐𝑜𝑠4𝜃 Replace cos4θ = 1+(2𝑐𝑜 𝑠 2 2𝜃 −1) The 1s cancel out =2𝑐𝑜 𝑠 2 2𝜃

8 WB11: Given that cos 𝑥 = in the range [180, 360] find the exact value of 2 sin 2𝑥 𝐶𝑜𝑠𝑥= 𝐴𝑑𝑗 𝐻𝑦𝑝 𝑆𝑖𝑛𝑥= 𝑂𝑝𝑝 𝐻𝑦𝑝 4 7 𝐶𝑜𝑠𝑥= 3 4 𝑆𝑖𝑛𝑥= x 3 Use Pythagoras’ to find the missing side (ignore negatives) 𝑠𝑖𝑛2𝑥 90 180 270 360 y = Sinθ y = Cosθ Cosx is positive so in the range 𝑆𝑖𝑛𝑥=− Therefore, Sinx is negative 2 Sin2x ≡ 4SinxCosx Sub in Sinx and Cosx 2 Sin2x = 4 × 3 4 ×− Work out and leave in surd form 2 Sin2x = −

9 WB12: Given that cos 𝑥 = 3 4 in the range [180, 360] find the exact value of tan 2𝑥
𝐶𝑜𝑠𝑥= 𝐴𝑑𝑗 𝐻𝑦𝑝 𝑇𝑎𝑛𝑥= 𝑂𝑝𝑝 𝐴𝑑𝑗 4 7 𝐶𝑜𝑠𝑥= 3 4 𝑇𝑎𝑛𝑥= x 3 Use Pythagoras’ to find the missing side (ignore negatives) 90 180 270 360 y = Cosθ y = Tanθ Cosx is positive so in the range 𝑇𝑎𝑛𝑥=− Therefore, Tanx is negative Tan 2x ≡ 2𝑇𝑎𝑛𝑥 1−𝑇𝑎 𝑛 2 𝑥 Sub in Tanx Tan 2x = 2×− − − ×− Work out and leave in surd form 𝑇𝑎𝑛2𝑥=−3 7

10 WB13: Show that tan 2𝜃 = 2 cot 𝜃 − tan 𝜃
𝑡𝑎𝑛2𝜃≡ 2𝑡𝑎𝑛𝜃 1−𝑡𝑎 𝑛 2 𝜃 Divide each part by tanθ 𝑡𝑎𝑛2𝜃≡ 2𝑡𝑎𝑛𝜃 𝑡𝑎𝑛𝜃 1 𝑡𝑎𝑛𝜃 − 𝑡𝑎 𝑛 2 𝜃 𝑡𝑎𝑛𝜃 Rewrite each part Cancel terms 𝑡𝑎𝑛2𝜃≡ 2 𝑐𝑜𝑡𝜃 − 𝑡𝑎𝑛𝜃

11 Given that x =3 sin 𝜃 and 𝑦=3 −4 cos 2𝜃
WB14: Given that x =3 sin 𝜃 and 𝑦=3 −4 cos 2𝜃 Eliminate  and express y in terms of x 𝑐𝑜𝑠2𝜃=1−2𝑠𝑖 𝑛 2 𝜃 𝑥=3𝑠𝑖𝑛𝜃 Divide by 3 𝑥 3 =𝑠𝑖𝑛𝜃 Replace Cos2θ and Sinθ 3−𝑦 4 = 1−2 𝑥 3 2 𝑦=3−4𝑐𝑜𝑠2𝜃 Multiply by 4 Subtract 3, divide by 4 Multiply by -1 4−8 𝑥 3 2 3−𝑦 4 =𝑐𝑜𝑠2𝜃 3−𝑦 = Subtract 3 1−8 𝑥 3 2 −𝑦 = Multiply by -1 8 𝑥 −1 𝑦 =

12 WB15: Solve the equation 3 cos 2𝑥 −𝑐𝑜𝑠 𝑥 + 2=0 in the range 0≤𝑥≤360
3(2𝑐𝑜 𝑠 2 𝑥−1)−𝑐𝑜𝑠𝑥+2=0 𝐶𝑜𝑠2𝜃≡2𝑐𝑜 𝑠 2 𝜃 −1 6𝑐𝑜 𝑠 2 𝑥−𝑐𝑜𝑠𝑥−1=0 (3𝑐𝑜𝑠𝑥+1)(2𝑐𝑜𝑠𝑥−1)=0 90 180 270 360 y = Cosθ 1 2 − 1 3 𝑐𝑜𝑠𝑥=− or 𝑐𝑜𝑠𝑥= 1 2 𝑥=60°, 109.5°, 250.5°, 300°

13 2𝑐𝑜 𝑠 2 𝜃 −1=7 cos 𝑥 +3 𝐶𝑜𝑠2𝜃≡2𝑐𝑜 𝑠 2 𝜃 −1 2𝑐𝑜 𝑠 2 𝜃 −7 cos 𝑥 −4=0
WB16: Solve the equation cos2x = 7cosx for 0≤𝑥≤2π 2𝑐𝑜 𝑠 2 𝜃 −1=7 cos 𝑥 +3 𝐶𝑜𝑠2𝜃≡2𝑐𝑜 𝑠 2 𝜃 −1 2𝑐𝑜 𝑠 2 𝜃 −7 cos 𝑥 −4=0 ( 2cos 𝑥 +1)( cos 𝑥 −4)=0 cos 𝑥 =− 1 2 , 4 x= 2𝜋 3 , 4𝜋 3

14 2 sin 𝑥 cos 𝑥 = sin 𝑥 cos 𝑥 𝑠𝑖𝑛2𝐴≡2 sin 𝐴 𝑐𝑜𝑠 𝐴 2 sin 𝑥 𝑐𝑜𝑠 2 𝑥= sin 𝑥
WB17: Solve the equation sin2x = tanx for 0≤𝑥≤2π 2 sin 𝑥 cos 𝑥 = sin 𝑥 cos 𝑥 𝑠𝑖𝑛2𝐴≡2 sin 𝐴 𝑐𝑜𝑠 𝐴 2 sin 𝑥 𝑐𝑜𝑠 2 𝑥= sin 𝑥 sin 𝑥 (2 𝑐𝑜𝑠 2 𝑥−1)=0 sin 𝑥 =0 or 𝑐𝑜𝑠 2 𝑥= 1 2 sin 𝑥 =0 or cos 𝑥 = x=0,𝜋, 2𝜋 x= 𝜋 4 , 3𝜋 4 , 5𝜋 4 , 7𝜋 4

15 self-assess using: R / A / G ‘I am now able to ____ .
KUS objectives BAT derive the double angle formulas BAT use the addition formulae to solve ‘show that’ problems BAT use the addition formulae to solve equations self-assess using: R / A / G ‘I am now able to ____ . To improve I need to be able to ____’


Download ppt "Double angle formulae."

Similar presentations


Ads by Google