Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hour 38 Scattering Cross Sections

Similar presentations


Presentation on theme: "Hour 38 Scattering Cross Sections"β€” Presentation transcript:

1 Hour 38 Scattering Cross Sections
Physics 321 Hour 38 Scattering Cross Sections

2 The Scattering Problem
In the cm frame, two particles approach each other and scatter. Given the interaction, what is the distribution of scattered particles? 𝑃 𝑃 0 Θ Θ 𝑃 0 𝑃

3 The Inverse Scattering Problem
Given the distribution of scattered particles, what is the interaction? This is a very hard but very interesting problem. 𝑃 𝑃 0 Θ Θ 𝑃 0 𝑃

4 The Scattering Problem
The impact need not be head-on. – The distance between the trajectories is the impact parameter, b. Θ 𝑃 𝑃 0 b

5 Relating θ to b The first thing we need to do is find the relationship between θ and b for a given type of interaction. Θ b Θ

6 Hard Sphere Scattering – b(ΞΈ)
cos πœ— 2 = sin πœ‹ 2 βˆ’ πœ— 2 = 𝑏 π‘Ž 𝑏=π‘Ž sin πœ‹βˆ’πœ— 2

7 Coulomb Scattering – b(ΞΈ)
First we note that the total angular momentum is β„“=𝑝𝛼𝑏+𝑝𝛽𝑏 =𝑝𝑏 𝐸=𝑇 ∞ = 𝑝 2 2πœ‡ = β„“ 2 2πœ‡π‘ 2

8 Coulomb Scattering – b(ΞΈ)
Next we use a result from the central force problem. 𝐸= 𝛾 2 πœ‡ 2 β„“ 2 πœ€ 2 βˆ’1 𝛾= π‘˜ 𝑒 π‘ž 1 π‘ž 2

9 Coulomb Scattering – b(ΞΈ)
Ο† For hyperbolic orbits π‘Ÿ πœ‘ = 𝐢 1+πœ€ cos πœ‘ cos πœ‘ π‘šπ‘Žπ‘₯ =βˆ’ 1 πœ€ πœ‘ π‘šπ‘Žπ‘₯ = πœ‹ 2 + πœ— 2 cos πœ‹ 2 + πœ— 2 = βˆ’sin πœ— 2 = βˆ’ 1 πœ€

10 Coulomb Scattering – b(ΞΈ)
Rotate the figure so that πœ‘ is measured with respect to the x-axis, as in Chapter 10. Ο† π‘Ÿ πœ‘ = 𝐢 1+πœ€ cos πœ‘ As π‘Ÿβ†’βˆž, 1+πœ€ cos πœ‘ β†’0 πœ‘ π‘šπ‘Žπ‘₯ = πœ‹ 2 + πœ— 2

11 Coulomb Scattering – b(ΞΈ)
Ο† For hyperbolic orbits π‘Ÿ πœ‘ = 𝐢 1+πœ€ cos πœ‘ cos πœ‘ π‘šπ‘Žπ‘₯ =βˆ’ 1 πœ€ πœ‘ π‘šπ‘Žπ‘₯ = πœ‹ 2 + πœ— 2 cos πœ‹ 2 + πœ— 2 = βˆ’sin πœ— 2 = βˆ’ 1 πœ€

12 Coulomb Scattering – b(ΞΈ)
Using sin πœ— 2 = 1 πœ€ Ο† πœ— 2 πœ€ πœ€ 2 βˆ’1 𝐸= 𝛾 2 πœ‡ 2 β„“ 2 πœ€ 2 βˆ’1 = 𝛾 2 πœ‡ 2 β„“ 2 cot 2 πœ— 2 1

13 Coulomb Scattering – b(ΞΈ)
𝐸= 𝛾 2 πœ‡ 2 β„“ 2 cot 2 πœ— 2 β„“ 2 =2πœ‡ 𝑏 2 𝐸 cot 2 πœ— 2 = 2 2πœ‡ 𝑏 2 𝐸 𝐸 𝛾 2 πœ‡ = 4 𝑏 2 𝐸 2 𝛾 2 cot πœ— 2 = 2𝑏𝑇 0 𝛾

14 Differential Cross Section - Definition
Consider a small beam striking a large target. The detector has solid angle ΔΩ and detects all particles scattered. ΞΈ detector beam target π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ / sec Γ— # π‘‘π‘Žπ‘Ÿπ‘”π‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž Γ—βˆ†Ξ©

15 Differential Cross Section - Definition
Consider a large beam striking a small target. A detector has solid angle ΔΩ. ΞΈ detector beam target π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž βˆ™ 𝑠𝑒𝑐 Γ—# π‘‘π‘Žπ‘Ÿπ‘”π‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ Γ—βˆ†Ξ©

16 Differential Cross Section - Theoretical
We usually take 1 target particle… ΞΈ detector beam target π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž βˆ™ 𝑠𝑒𝑐 Γ—1Γ—βˆ†Ξ©

17 Differential Cross Section - Theoretical
π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž βˆ™ 𝑠𝑒𝑐 Γ—1Γ—βˆ†Ξ© Find the total number of beam particles per second between 𝑏→𝑏+βˆ†π‘. This is the number in a ring of radius 𝑏. 𝑁≑ # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž βˆ™ 𝑠𝑒𝑐 This is: 𝑁 2πœ‹π‘ 𝑑𝑏

18 Differential Cross Section - Theoretical
π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 𝑁 βˆ†Ξ© 2) Find the total number of scattered particles between πœ—β†’πœ—+βˆ†πœ—. 𝑏=𝑏 πœ— 𝑑𝑏= 𝑏 β€² πœ— π‘‘πœ— This is: 𝑁 2πœ‹π‘ 𝑑𝑏=𝑁 2πœ‹π‘ 𝑏 β€² πœ— π‘‘πœ—

19 Differential Cross Section - Theoretical
π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 𝑁 βˆ†Ξ© 3) Think of the detector as subtending angles βˆ†πœ— and βˆ†πœ‘. The solid angle is defined by: βˆ†Ξ©= sin πœ— βˆ†πœ— βˆ†πœ‘ or more generally βˆ†Ξ©= sin πœ— π‘‘πœ— π‘‘πœ‘ (If the area of the detector is small and a distance R from the target, this can be expressed in terms of the detector’s area: π΄β‰ˆ 𝑅 2 βˆ†Ξ©.) This is: 𝑁 2πœ‹π‘ 𝑑𝑏=𝑁 2πœ‹π‘ 𝑏 β€² πœ— π‘‘πœ—

20 Differential Cross Section - Theoretical
π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 𝑁 βˆ†Ξ© 4) The number of particles per second scattering into π‘‘πœ— is: 𝑁 2πœ‹π‘ 𝑏 β€² πœ— π‘‘πœ— The number of those hitting the detector is 𝑁 2πœ‹π‘ 𝑏 β€² πœ— π‘‘πœ—Γ— βˆ†πœ‘ 2πœ‹

21 Differential Cross Section - Theoretical
The number of particles detected per second is 𝑁 𝑏 𝑏 β€² πœ— π‘‘πœ—π‘‘πœ‘ π‘‘πœŽ 𝑑Ω = 𝑁 𝑏 𝑏 β€² πœ— π‘‘πœ—π‘‘πœ‘ 𝑁 sin πœ— π‘‘πœ—π‘‘πœ‘ = 𝑏 𝑏 β€² πœ— sin πœ— Or since we want a positive value, we usually write π‘‘πœŽ 𝑑Ω = 1 sin πœ— 𝑏 𝑑𝑏 π‘‘πœ—

22 Differential Cross Section - Theoretical
Or since we want a positive value, we usually write π‘‘πœŽ 𝑑Ω = 1 sin πœ— 𝑏 𝑑𝑏 π‘‘πœ— This is the usual β€œbook form,” but it is usually more convenient to write this as: π‘‘πœŽ 𝑑Ω = 𝑏 2 sin πœ— 2 cos πœ— 𝑑𝑏 π‘‘πœ—

23 Total Cross Section The total cross section is the differential cross section integrated over all angles. 𝜎= π‘‘πœŽ 𝑑Ω 𝑑Ω= π‘‘πœŽ 𝑑Ω sin πœ—π‘‘πœ—π‘‘πœ‘

24 Hard Sphere Scattering (cm)
𝑏= π‘Ÿ 1 + π‘Ÿ 2 sin πœ‹βˆ’πœ— 2 = π‘Ÿ 1 + π‘Ÿ 2 cos πœ— 2 𝑑𝑏 π‘‘πœ— =βˆ’ π‘Ÿ 1 + π‘Ÿ 2 cos πœ‹βˆ’πœ— 2 =βˆ’ π‘Ÿ 1 + π‘Ÿ 2 sin πœ— 2 π‘‘πœŽ 𝑑Ω = 1 2cos πœ— 2 sin πœ— π‘Ÿ 1 + π‘Ÿ cos πœ— 2 sin πœ— 2 π‘‘πœŽ 𝑑Ω = π‘Ÿ 1 + π‘Ÿ 2 2

25 Hard Sphere Scattering (cm)
π‘‘πœŽ 𝑑Ω = π‘Ÿ 1 + π‘Ÿ 2 2 𝜎= π‘‘πœŽ 𝑑Ω 𝑑Ω=πœ‹ π‘Ÿ 1 + π‘Ÿ 2 2

26 Rutherford Scattering (cm)
𝑏= 𝛾 2𝑇 0 cot πœ— 2 𝑑𝑏 π‘‘πœ— = βˆ’ 𝛾 2𝑇 csc 2 πœ— 2 π‘‘πœŽ 𝑑Ω = 1 2cos πœ— 2 sin πœ— 𝛾 2𝑇 cot πœ— csc 2 πœ— 2 π‘‘πœŽ 𝑑Ω = 1 sin 4 πœ— 𝛾 4𝑇 = 𝛾 𝑇 sin 4 πœ— 2

27 CM to Lab Conversion The only thing that changes in lab vs cm is βˆ†Ξ©.
π‘‘πœŽ 𝑑Ω = # π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑/𝑠𝑒𝑐 # π‘œπ‘“ π‘π‘’π‘Žπ‘š π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ / sec Γ— # π‘‘π‘Žπ‘Ÿπ‘”π‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’π‘Ž Γ—βˆ†Ξ© =βˆ’βˆ† cos πœ— π‘™π‘Žπ‘ βˆ† πœ‘ π‘™π‘Žπ‘ βˆ† Ξ© π‘π‘š = βˆ’βˆ† cos πœ— π‘π‘š βˆ† πœ‘ π‘π‘š βˆ† πœ‘ π‘™π‘Žπ‘ =βˆ† πœ‘ π‘π‘š β†’ π‘‘πœŽ 𝑑Ω π‘™π‘Žπ‘ = π‘‘πœŽ 𝑑Ω π‘π‘š Γ— 𝑑 cos πœ— π‘π‘š 𝑑 cos πœ— π‘™π‘Žπ‘


Download ppt "Hour 38 Scattering Cross Sections"

Similar presentations


Ads by Google