Download presentation
Presentation is loading. Please wait.
1
7-5 and 7-6: Apply Trigonometric Ratios
Geometry Chapter 7 7-5 and 7-6: Apply Trigonometric Ratios
2
Warm-Up Find the values of the variables in the following right triangles. 1.) )
3
Apply Trigonometric Ratios
Objective: Students will be able to solve for missing side lengths in right triangles using trigonometric ratios. Agenda Trigonometry Sine Cosine Tangent
4
Trigonometry A Trigonometric Ratio is the ratio of lengths of two sides of a right triangle. You will use Trigonometric Ratios to find the measure of a side or of an acute angle in a right triangle.
5
Trigonometry π© π¨ πͺ Example: For βπ¨π©πͺ
The leg across from the marked angle is known as the Opposite Leg and the leg attached to the angle is known as the Adjacent Leg. Across from the right angle will always be the Hypotenuse. π¨ π© πͺ Hypotenuse Opposite Leg Adjacent Leg
6
Trigonometry π© π¨ πͺ Example: For βπ¨π©πͺ
The leg across from the marked angle is known as the Opposite Leg and the leg attached to the angle is known as the Adjacent Leg. Across from the right angle will always be the Hypotenuse. π¨ π© πͺ For Example: π©πͺ is the Leg Opposite to <π¨ And π¨πͺ is the Leg Adjacent to <π¨ Hypotenuse Opposite Leg Adjacent Leg
7
The Sine Ratio Sine of <π΄= πππ πππππ ππ‘π < π΄ βπ¦πππ‘πππ’π π = π΅πΆ π΄π΅
The first ratio is known as the Sine Ratio. Sine of <π΄= πππ πππππ ππ‘π < π΄ βπ¦πππ‘πππ’π π = π΅πΆ π΄π΅ Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ
8
The Sine Ratio Sine of <π΅= πππ πππππ ππ‘π < π΅ βπ¦πππ‘πππ’π π = π΄πΆ π΄π΅
The first ratio is known as the Sine Ratio. Sine of <π΅= πππ πππππ ππ‘π < π΅ βπ¦πππ‘πππ’π π = π΄πΆ π΄π΅ Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ
9
Sine Examples From the given triangle, find πππβ‘πΏ and πππβ‘π. ππ π ππ πΏ
π
10
Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π
Sine Examples From the given triangle, find πππβ‘πΏ and πππβ‘π. Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π ππ π ππ πΏ π π
11
Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π
Sine Examples From the given triangle, find πππβ‘πΏ and πππβ‘π. Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π π¬π’π§ π = π ππ βπ.ππππ ππ π ππ πΏ π π
12
Sine Examples From the given triangle, find πππβ‘πΏ and πππβ‘π.
Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π π¬π’π§ π = π ππ βπ.ππππ ππ π ππ πΏ π π Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π
13
Sine Examples From the given triangle, find πππβ‘πΏ and πππβ‘π.
Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π π¬π’π§ π = π ππ βπ.ππππ ππ π ππ πΏ π π Sine of π= πππ πππππ ππ‘π < π βπ¦πππ‘πππ’π π π¬π’π§ π= ππ ππ βπ.ππππ
14
The Cosine Ratio The second ratio is known as the Cosine Ratio. Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ Cosine of <π΄= πππ ππππππππ‘ π‘π < π΄ βπ¦πππ‘πππ’π π = π΄πΆ π΄π΅
15
The Cosine Ratio The second ratio is known as the Cosine Ratio. Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ Cosine of <π΅= πππ ππππππππ‘ π‘π < π΅ βπ¦πππ‘πππ’π π = π΅πΆ π΄π΅
16
Cosine Examples From the given triangle, find cosβ‘πΏ and cosβ‘π. π ππ π
ππ π ππ πΏ π π
17
Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π
Cosine Examples From the given triangle, find cosβ‘πΏ and cosβ‘π. Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π ππ π ππ πΏ π π
18
Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π
Cosine Examples From the given triangle, find cosβ‘πΏ and cosβ‘π. Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π ππ¨π¬ π= ππ ππ βπ.ππππ ππ π ππ πΏ π π
19
Cosine Examples ππ¨π¬ π= ππ ππ βπ.ππππ
From the given triangle, find cosβ‘πΏ and cosβ‘π. Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π ππ¨π¬ π= ππ ππ βπ.ππππ ππ π ππ πΏ π π Cosine of π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π
20
Cosine Examples ππ¨π¬ π= ππ ππ βπ.ππππ ππ¨π¬ π= π ππ βπ.ππππ
From the given triangle, find cosβ‘πΏ and cosβ‘π. Cosine o π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π ππ¨π¬ π= ππ ππ βπ.ππππ ππ π ππ πΏ π π Cosine of π= πππ ππππππππ‘ π‘π < π βπ¦πππ‘πππ’π π ππ¨π¬ π= π ππ βπ.ππππ
21
The Tangent Ratio The last ratio is known as the Tangent Ratio. Tangent of <π΄= πππ πππππ ππ‘π < π΄ πππ ππππππππ‘ π‘π <π΄ = π΅πΆ π΄πΆ Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ
22
The Tangent Ratio The last ratio is known as the Tangent Ratio. Tangent of <π΅= πππ πππππ ππ‘π < π΅ πππ ππππππππ‘ π‘π < π΅ = π΄πΆ π΅πΆ Adjacent Leg Opposite Leg Hypotenuse π¨ π© πͺ
23
Tangent Examples From the given right triangle, find πππβ‘πΏ and πππβ‘π.
π ππ ππ π πΏ π
24
Tangent Examples From the given right triangle, find πππβ‘πΏ and πππβ‘π.
π ππ ππ π πΏ π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π
25
Tangent Examples From the given right triangle, find πππβ‘πΏ and πππβ‘π.
π ππ ππ π πΏ π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π πππ§ πΏ= ππ π =π.π
26
Tangent Examples From the given right triangle, find πππβ‘πΏ and πππβ‘π.
π ππ ππ π πΏ π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π πππ§ πΏ= ππ π =π.π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π
27
Tangent Examples From the given right triangle, find πππβ‘πΏ and πππβ‘π.
π ππ ππ π πΏ π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π πππ§ πΏ= ππ π =π.π Tangent of <π= πππ πππππ ππ‘π < π πππ ππππππππ‘ π‘π < π πππ§ π= π ππ βπ.ππππ
28
Putting it all together
In trigonometry, there is a saying that helps with memorizing how to set up the ratios of Sine, Cosine and Tangent. See if you can get it from this:
29
Putting it all together
Sine: Opposite: Hypotenuse:
30
Putting it all together
Sine: Opposite: Hypotenuse: Cosine: Adjacent: Hypotenuse:
31
Putting it all together
Sine: Opposite: Hypotenuse: Cosine: Adjacent: Hypotenuse: Tangent: Opposite: Adjacent:
32
Putting it all together
Sine: Opposite: Hypotenuse: Cosine: Adjacent: Hypotenuse: Tangent: Opposite: Adjacent: SOH CAH TOA
33
Trig With Angles Trig Ratios can also be used to find the values of specific angles. For example, you can write tan (10) to represent the tangent of any angle of degree measure 10. You can find these values by using either a calculator, or a table of values.
35
Trig With Angles 1.) tan 10Β° 4.) sin 45Β° 2.) sin 25Β° 5.) tan 60Β° 3.) cos 44Β° 6.) cos 30Β°
36
Trig With Angles 1.) tan 10Β° βπ.ππππ 4.) sin 45Β° βπ.ππππ 2.) sin 25Β° βπ.ππππ 5.) tan 60Β° βπ.ππππ 3.) cos 44Β° βπ.ππππ 6.) cos 30Β° βπ.ππππ
37
Examples: Find Missing Sides
Find the value of x. ππ π ππΒ°
38
Examples: Find Missing Sides
Find the value of x. ππ π ππΒ° Solution: tan 56Β° = π₯ 32
39
Examples: Find Missing Sides
Find the value of x. Solution: tan 56Β° = π₯ 32 π₯=32β tan 56Β° π₯=32 β1.4826 π=ππ.ππππ ππ π ππΒ°
40
Examples: Find Missing Sides
Find the value of x. ππ π ππΒ°
41
Examples: Find Missing Sides
Find the value of x. Solution: sin 70Β° = 54 π₯ ππ π ππΒ°
42
Examples: Find Missing Sides
Find the value of x. Solution: sin 70Β° = 54 π₯ π₯β sin 70Β° =54 π₯= 54 sin 70Β° π=ππ.ππππ ππ π ππΒ°
43
Examples: Find Missing Sides
Find the values of x and y. π π 67Β° πππ
44
Examples: Find Missing Sides
Find the values of x and y. Solution (For x): sin 67Β° = π₯ 120 π π 67Β° πππ
45
Examples: Find Missing Sides
Find the values of x and y. Solution (For x): sin 67Β° = π₯ 120 π₯=120β sin 67Β° π₯=120 β0.9205 π=πππ.ππ π π 67Β° πππ
46
Examples: Find Missing Sides
Find the values of x and y. Solution (For y): cos 67Β° = π¦ 120 π π 67Β° πππ
47
Examples: Find Missing Sides
Find the values of x and y. Solution (For y): cos 67Β° = π¦ 120 π¦=120β cos 67Β° π¦=120 β0.3907 π=ππ.πππ π π 67Β° πππ
48
Examples: Find Missing Sides
Find the values of x and y. π π ππΒ° ππ
49
Examples: Find Missing Sides
Find the values of x and y. π π ππΒ° ππ Solution (For x): tan 30Β° = 45 π₯
50
Examples: Find Missing Sides
Find the values of x and y. π π ππΒ° ππ Solution (For x): tan 30Β° = 45 π₯ π₯β tan 30Β°=45 π₯= 45 tan 30Β° π=ππ.ππππ
51
Examples: Find Missing Sides
Find the values of x and y. π π ππΒ° ππ Solution (For y): sin 30Β° = 45 π¦
52
Examples: Find Missing Sides
Find the values of x and y. π π ππΒ° ππ Solution (For y): sin 30Β° = 45 π¦ π¦β sin 30Β° =45 π¦= 45 sin 30Β° π=ππ
53
Final Check Solve the value of x using trig ratios. 1.)
54
Final Check Solve the value of x using trig ratios. 1.) Solution:
π₯β15.004
55
Final Check Solve the value of x using trig ratios. 2.)
56
Final Check Solve the value of x using trig ratios. 2.) Solution:
cos 63Β° = 23 π₯ π₯= 23 cos 63Β° π₯β
57
Final Check Solve the value of x using trig ratios. 3.)
58
Final Check Solve the value of x using trig ratios. Solution: 3.)
tan 38Β° = 20 π₯ π₯= 20 tan 38Β° π₯β
Similar presentations
Β© 2025 SlidePlayer.com Inc.
All rights reserved.