Presentation is loading. Please wait.

Presentation is loading. Please wait.

P1 Chapter 10 :: Trigonometric Identities & Equations

Similar presentations


Presentation on theme: "P1 Chapter 10 :: Trigonometric Identities & Equations"β€” Presentation transcript:

1 P1 Chapter 10 :: Trigonometric Identities & Equations
Last modified: 21st September 2018

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 Chapter Overview Those who did IGCSE Further Maths or Additional Maths will be familiar with this content. Exact trigonometric values for 30Β°,45Β°,90Β° were in the GCSE syllabus. 2:: Use identities sin π‘₯ cos π‘₯ ≑ tan π‘₯ and sin 2 π‘₯ + cos 2 π‘₯ ≑1 1:: Know exact trig values for 30Β°, 45Β°, 60Β° and understand unit circle. Show that 3 sin 2 π‘₯ +7 sin π‘₯ = cos 2 π‘₯ βˆ’4 can be written in the form 4 sin 2 π‘₯ +7 sin π‘₯ +3=0 3:: Solve equations of the form sin π‘›πœƒ =π‘˜ and sin πœƒΒ±π›Ό =π‘˜ 4:: Solve equations which are quadratic in sin/cos/tan. Solve sin 2π‘₯ cos 2π‘₯ +1 =0, for 0≀π‘₯<360Β°. Solve, for 0≀π‘₯<360Β°, the equation 4 sin 2 π‘₯ +9 cos π‘₯ βˆ’6=0

4 sin/cos/tan of 30Β°, 45Β°, 60Β° You will frequently encounter angles of 30Β°, 60Β°, 45Β° in geometric problems. Why? We see these angles in equilateral triangles and half squares. ? Although you will always have a calculator, you need to know how to derive these. All you need to remember: ! Draw half a unit square and half an equilateral triangle of side 2. sin 30Β° = cos 30Β° = tan 30Β° = sin 60Β° = cos 60Β° = tan 60Β° = 3 ? sin 45Β° = cos 45Β° = tan 45Β° =1 ? 2 ? ? ? 1 ? ? 30Β° ? 2 ? ? 45Β° 3 ? ? ? ? 1 60Β° ? 1 ? ? ?

5 The Unit Circle and Trigonometry
For values of πœƒ in the range 0<πœƒ<90Β°, you know that sin πœƒ and cos πœƒ are lengths on a right-angled triangle: But how do we get the rest of the graph for 𝑠𝑖𝑛, π‘π‘œπ‘  and π‘‘π‘Žπ‘› when 90Β°β‰€πœƒβ‰€360Β°? The point 𝑃 on a unit circle, such that 𝑂𝑃 makes an angle πœƒ with the positive π‘₯-axis, has coordinates cos πœƒ , sin πœƒ . 𝑂𝑃 has gradient tan πœƒ . 1 ? 𝑦 𝐬𝐒𝐧 𝜽 𝑃 cos πœƒ , sin πœƒ πœƒ 1 ? 𝐜𝐨𝐬 𝜽 πœƒ π‘₯ 𝑂 And what would be the gradient of the bold line? π’Ž= πš«π’š πš«π’™ = 𝐬𝐒𝐧 𝜽 𝐜𝐨𝐬 𝜽 But also: 𝐭𝐚𝐧 𝜽 = 𝒐𝒑𝒑 𝒂𝒅𝒋 = 𝐬𝐒𝐧 𝜽 𝐜𝐨𝐬 𝜽 βˆ΄π’Ž= 𝐭𝐚𝐧 𝜽 ? Angles are always measured anticlockwise. (Further Mathematicians will encounter the same when they get to Complex Numbers) We can consider the coordinate cos πœƒ , sin πœƒ as πœƒ increases from 0 to 360°…

6 Mini-Exercise ? ? ? ? ? ? ? ? ? ? ? ? ? cos πœƒ sin πœƒ tan πœƒ cos πœƒ sin πœƒ
Use the unit circle to determine each value in the table, using either β€œ0”, β€œ+ve”, β€œ-ve”, β€œ1”, β€œ-1” or β€œundefined”. Recall that the point on the unit circle has coordinate ( cos πœƒ , sin πœƒ ) and 𝑂𝑃 has gradient tan πœƒ . π‘₯-value 𝑦-value Gradient of 𝑂𝑃. cos πœƒ sin πœƒ tan πœƒ cos πœƒ sin πœƒ tan πœƒ πœƒ=0 πœƒ=180Β° ? 𝑦 𝑦 1 ? -1 𝑃 𝑃 πœƒ π‘₯ π‘₯ 0<πœƒ<90Β° ? 180Β°<πœƒ<270Β° ? 𝑦 𝑦 +ve +ve +ve ? -ve -ve +ve 𝑃 1 πœƒ πœƒ π‘₯ π‘₯ 𝑃 πœƒ=90Β° ? πœƒ=270Β° ? ? 𝑦 ? 𝑦 𝑃 1 Undefined (vertical lines don’t have a well-defined gradient) 1 Undefined πœƒ πœƒ π‘₯ π‘₯ 𝑃 90Β°<πœƒ<180Β° ? 270Β°<πœƒ<360Β° ? ? 𝑦 -ve +ve -ve ? 𝑦 +ve -ve -ve 𝑃 𝑃 πœƒ πœƒ π‘₯ π‘₯

7 The Unit Circle and Trigonometry
The unit circles explains the behaviour of these trigonometric graphs beyond 90Β°. However, the easiest way to remember whether sin π‘₯ , cos π‘₯ , tan π‘₯ are positive or negative is to just do a very quick sketch (preferably mentally!) of the corresponding graph. 𝑦 positive for 0<π‘₯<180Β° 𝑦=sin π‘₯ π‘₯ 90 180 270 360 Note: The textbook uses something called β€˜CAST diagrams’. I will not be using them in these slides, but you may wish to look at these technique as an alternative approach to various problems in the chapter. negative for 180Β°<π‘₯<360Β°

8 A Few Trigonometric Angle Laws
The following are all easily derivable using a quick sketch of a trigonometric graph, and are merely a convenience so you don’t always have to draw out a graph every time. You are highly encouraged to memorise these so that you can do exam questions faster. 𝑦= sin π‘₯ sin π‘₯ = sin 180Β°βˆ’π‘₯ We saw this in the previous chapter when covering the β€˜ambiguous case’ when using the sine rule. 1 e.g. sin 150Β° = sin 30Β° 30 150 180 𝑦= cos π‘₯ cos π‘₯ = cos 360Β°βˆ’π‘₯ 2 30 330 360 e.g. cos 330Β° = cos 30Β° 𝑠𝑖𝑛 and π‘π‘œπ‘  repeat every 360Β° but π‘‘π‘Žπ‘› every 180Β° 𝑦= sin π‘₯ 3 30 360 390 720 e.g. sin 390Β° = sin 30Β° Remember from the previous chapter that β€œcosine” by definition is the sine of the β€œcomplementary” angle. This was/is never covered in the textbook but caught everyone by surprise when it came up in a C3 exam. sin π‘₯ = cos 90Β°βˆ’π‘₯ 4 e.g. sin 50Β° = cos 40Β°

9 Examples Without a calculator, work out the value of each below. π‘‘π‘Žπ‘› repeats every 180Β° so can subtract 180Β° Use the β€˜laws’ where you can, but otherwise just draw out a quick sketch of the graph. sin π‘₯ = sin 180βˆ’π‘₯ cos π‘₯ = cos 360βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 360Β° but π‘‘π‘Žπ‘› every 180Β° tan 225Β° = 𝐭𝐚𝐧 πŸ’πŸ“Β° =𝟏 tan 210Β° = 𝐭𝐚𝐧 πŸ‘πŸŽΒ° = 𝟏 πŸ‘ sin 150Β° = 𝐬𝐒𝐧 πŸ‘πŸŽΒ° = 𝟏 𝟐 cos 300Β° = 𝐜𝐨𝐬 πŸ”πŸŽΒ° = 𝟏 𝟐 sin βˆ’45Β° =βˆ’ 𝐬𝐒𝐧 πŸ’πŸ“Β° =βˆ’ 𝟏 𝟐 cos 750Β° = 𝐜𝐨𝐬 πŸ‘πŸŽΒ° = πŸ‘ 𝟐 cos 120Β° =βˆ’ 𝐜𝐨𝐬 πŸ”πŸŽΒ° =βˆ’ 𝟏 𝟐 ? ? For 𝑠𝑖𝑛 we can subtract from 180Β°. ? ? For π‘π‘œπ‘  we can subtract from 360Β°. ? We have to resort to a sketch for this one. 𝑦= sin π‘₯ βˆ’45 45 π‘₯ 1 2 βˆ’ 1 2 Froflections: It’s not hard to see from the graph that in general, sin βˆ’π‘₯ =βˆ’ sin π‘₯ . Even more generally, a function 𝑓 is known as an β€˜odd function’ if 𝑓 βˆ’π‘₯ =βˆ’π‘“(π‘₯). π‘‘π‘Žπ‘› is similarly β€˜odd’ as tan βˆ’π‘₯ =βˆ’ tan π‘₯ . A function is even if 𝑓 βˆ’π‘₯ =𝑓(π‘₯). Examples are 𝑓 π‘₯ =cos⁑(π‘₯) and 𝑓 π‘₯ = π‘₯ 2 as cos βˆ’π‘₯ =cos⁑(π‘₯) and βˆ’π‘₯ 2 = π‘₯ 2 . You do not need to know this for the exam. ? cos repeats every 360Β°. ? Again, let’s just use a graph. 𝑦= cos π‘₯ 1 2 The graph is rotationally symmetric about 90Β°. Since 120Β° is 30Β° above 90Β°, we get the same 𝑦 value for 90Β°βˆ’30Β°=60Β°, except negative. 120 π‘₯ 60 90 180

10 Test Your Understanding
Without a calculator, work out the value of each below. cos 315Β° = 𝐜𝐨𝐬 πŸ’πŸ“Β° = 𝟏 𝟐 sin 420Β° = 𝐬𝐒𝐧 πŸ”πŸŽΒ° = πŸ‘ 𝟐 tan βˆ’120Β° = 𝐭𝐚𝐧 πŸ”πŸŽΒ° = πŸ‘ tan βˆ’45Β° = βˆ’π’•π’‚π’ πŸ’πŸ“Β° =βˆ’πŸ sin 135Β° = 𝐬𝐒𝐧 πŸ’πŸ“Β° = 𝟏 𝟐 ? sin π‘₯ = sin 180βˆ’π‘₯ cos π‘₯ = cos 360βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 360Β° but π‘‘π‘Žπ‘› every 180Β° ? ? ? ?

11 Exercise 10A/B Pearson Pure Mathematics Year 1/AS Page 207, 209

12 𝑃 1 sin πœƒ πœƒ 𝑂 cos πœƒ Trigonometric Identities π’”π’Š 𝒏 𝟐 𝜽+𝒄𝒐 𝒔 𝟐 𝜽=𝟏 ? ? ?
Returning to our point on the unit circle… 1 ? sin πœƒ πœƒ 𝑂 cos πœƒ ? ? Then 𝒕𝒂𝒏 𝜽= π’”π’Šπ’ 𝜽 𝒄𝒐𝒔 𝜽 1 ? Pythagoras gives you... π’”π’Š 𝒏 𝟐 𝜽+𝒄𝒐 𝒔 𝟐 𝜽=𝟏 2 sin 2 πœƒ is a shorthand for sin πœƒ It does NOT mean the sin is being squared – this does not make sense as sin is a function, and not a quantity that we can square! You are really uncool if you get this reference.

13 Application of identities #1: Proofs
Prove that 1βˆ’ tan πœƒ sin πœƒ cos πœƒ ≑ cos 2 πœƒ ? tan π‘₯ = sin π‘₯ cos π‘₯ sin 2 π‘₯ + cos 2 π‘₯ =1 Fro Tip #1: Turn any tan’s into sin’s and cos’s. 𝐿𝐻𝑆=1βˆ’ sin πœƒ cos πœƒ sin πœƒ cos πœƒ =1βˆ’ sin 2 πœƒ π‘π‘œπ‘ πœƒ cos πœƒ =1βˆ’ sin 2 πœƒ = cos 2 πœƒ =𝑅𝐻𝑆 ? Recall that ≑ means β€˜equivalent to’, and just means the LHS is always equal to the RHS for all values of πœƒ. From Chapter 7 (β€˜Proofs’) we saw that usually the best method is to manipulate one side (e.g. LHS) until we get to the other (RHS). ? ?

14 More Examples ? ? ? ? ? Prove that tan πœƒ + 1 tan πœƒ ≑ 1 sin πœƒ cos πœƒ
Edexcel C2 June 2012 Paper 1 Q16 Prove that tan πœƒ + 1 tan πœƒ ≑ 1 sin πœƒ cos πœƒ Simplify 5βˆ’5 sin 2 πœƒ ? ? ≑5 1βˆ’ sin 2 πœƒ ≑5 cos 2 πœƒ 𝐿𝐻𝑆≑ sin πœƒ cos πœƒ + cos πœƒ sin πœƒ ≑ sin 2 πœƒ sin πœƒ cos πœƒ + cos 2 πœƒ sin πœƒ cos πœƒ ≑ sin 2 πœƒ + cos 2 πœƒ sin πœƒ cos πœƒ ≑ 1 sin πœƒ cos πœƒ ≑𝑅𝐻𝑆 ? Fro Tip #3: Look out for 1βˆ’ sin 2 πœƒ and 1βˆ’ cos 2 πœƒ . Students often don’t spot that these can be simplified. ? ? Fro Tip #2: In any addition/subtraction involving at least one fraction (with trig functions), always combine algebraically into one.

15 Test Your Understanding
Prove that tan π‘₯ cos π‘₯ 1βˆ’ cos 2 π‘₯ ≑1 Prove that cos 4 πœƒ βˆ’ sin 4 πœƒ cos 2 πœƒ ≑1βˆ’ tan 2 πœƒ ? ? 𝐿𝐻𝑆≑ sin π‘₯ cos π‘₯ cos π‘₯ sin 2 π‘₯ ≑ sin π‘₯ sin π‘₯ ≑1 𝐿𝐻𝑆≑ cos 2 πœƒ + sin 2 πœƒ cos 2 πœƒ βˆ’ sin 2 πœƒ cos 2 πœƒ ≑ cos 2 πœƒ βˆ’ sin 2 πœƒ cos 2 πœƒ ≑ cos 2 πœƒ cos 2 πœƒ βˆ’ sin 2 πœƒ cos 2 πœƒ ≑1βˆ’ tan 2 πœƒ ≑𝑅𝐻𝑆 AQA IGCSE Further Maths Worksheet Prove that tan 2 πœƒ ≑ 1 cos 2 πœƒ βˆ’1 ? 𝐿𝐻𝑆≑ sin 2 πœƒ cos 2 πœƒ ≑ 1βˆ’ cos 2 πœƒ cos 2 πœƒ ≑ 1 cos 2 πœƒ βˆ’ cos 2 πœƒ cos 2 πœƒ ≑ 1 cos 2 πœƒ βˆ’1≑𝑅𝐻𝑆

16 Exercise 10C ? Pearson Pure Mathematics Year 1/AS Page 211-212
Extension: ? For convenience let 𝒔= π’”π’Šπ’ 𝜽 and 𝒄= 𝒄𝒐𝒔 𝜽 . As we’d usually do for simultaneous equations, we could make coefficients of 𝒙 terms the same: π’”π’„π’™βˆ’ 𝒔 𝟐 π’š=πŸπ’” 𝒔𝒄𝒙+ 𝒄 𝟐 π’š=𝒄 Then subtracting: 𝒔 𝟐 + 𝒄 𝟐 π’š=π’„βˆ’πŸπ’” βˆ΄π’š=π’„βˆ’πŸπ’” Similarly making π’š terms the same, we yield 𝒙=πŸπ’„+𝒔 𝒙,π’š are defined for every value of 𝜽, so the answer is (A). Why might it have not been (A)? Suppose 𝒙= 𝟐 𝒄𝒐𝒔 𝜽 +π’”π’Šπ’πœ½ 𝐬𝐒𝐧 𝜽 . This would not be defined whenever π’”π’Šπ’ 𝜽=𝟎. [MAT C] The simultaneous equations in π‘₯,𝑦, cos πœƒ π‘₯βˆ’ sin πœƒ 𝑦=2 cos πœƒ π‘₯+ sin πœƒ 𝑦=1 are solvable: for all values of πœƒ in range 0β‰€πœƒ<2πœ‹ except for one value of πœƒ in range 0β‰€πœƒ<2πœ‹ except for two values of πœƒ in range 0β‰€πœƒ<2πœ‹ except for three values of πœƒ in range 0β‰€πœƒ<2πœ‹

17 Solving Trigonometric Equations
Remember those trigonometric angle laws (on the right) earlier this chapter? They’re about to become super freakin’ useful! Reminder of β€˜trig laws’: sin π‘₯ = sin 180βˆ’π‘₯ cos π‘₯ = cos 360βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 360Β° but π‘‘π‘Žπ‘› every 180Β° Solve sin πœƒ = 1 2 in the interval 0β‰€πœƒβ‰€360Β°. ? πœƒ= sin βˆ’ =30Β° or πœƒ=180Β°βˆ’30Β°=150Β° Froculator Note: When you do 𝑠𝑖 𝑛 βˆ’1 , π‘π‘œ 𝑠 βˆ’1 and π‘‘π‘Ž 𝑛 βˆ’1 on a calculator, it gives you only one value, known as the principal value. Solve 5 tan πœƒ =10 in the interval βˆ’180Β°β‰€πœƒ<180Β° ? tan πœƒ = 10 5 =2 πœƒ= tan βˆ’1 (2 )=63.4Β° (1𝑑𝑝) or πœƒ=63.4Β°βˆ’180Β°=βˆ’116.6Β° 1𝑑𝑝 Fro Tip: Look out for the solution range required. βˆ’180β‰€πœƒ<180Β° is a particularly common one. π‘‘π‘Žπ‘› repeats every 180Β°, so can add/subtract 180Β° as we please.

18 Slightly Harder Ones… ? ? Solve sin πœƒ =βˆ’ 1 2 in the interval 0β‰€πœƒβ‰€360Β°.
πœƒ= sin βˆ’1 βˆ’ =βˆ’30Β° or πœƒ=180Β°βˆ’ βˆ’30Β° =210Β° or πœƒ=βˆ’30Β°+360Β°=330Β° This is not in range. In general you should have 2 solutions per 360Β° (except when at a peak or trough of the trig graph) Note that we’ve had to use a second law, i.e. that 𝑠𝑖𝑛 repeats every 360Β°. Solve sin πœƒ = 3 cos πœƒ in the interval 0β‰€πœƒβ‰€360Β°. ? sin πœƒ cos πœƒ = 3 tan πœƒ = 3 πœƒ= tan βˆ’ =60Β° or πœƒ=60Β°+180Β°=240Β° Hint: The problem here is that we have two different trig functions. Is there anything we can divide both sides by so we only have one trig function?

19 Test Your Understanding
Solve 2 cos πœƒ = 3 in the interval 0β‰€πœƒβ‰€360Β°. ? cos πœƒ= πœƒ= cos βˆ’ =30Β° or πœƒ=360Β°βˆ’30Β°=330Β° Solve 3 sin πœƒ = cos πœƒ in the interval βˆ’180Β°β‰€πœƒβ‰€180Β°. ? tan πœƒ= πœƒ= tan βˆ’ =30Β° or πœƒ=30Β°βˆ’180Β°=βˆ’150Β°

20 Exercise 10D Pearson Pure Mathematics Year 1/AS Page

21 Harder Equations ? Solve cos 3π‘₯=βˆ’ 1 2 in the interval 0≀π‘₯≀360Β°.
Harder questions replace the angle πœƒ with a linear expression. Solve cos 3π‘₯=βˆ’ in the interval 0≀π‘₯≀360Β°. ? STEP 1: Adjust the range of values for πœƒ to match the expression inside the cos. 0≀3π‘₯<1080Β° 3π‘₯= cos βˆ’1 βˆ’ =120Β° 3π‘₯=120Β°,240Β°,480Β°,600Β°,840Β°,960Β° π‘₯=40Β°,80Β°,160Β°,200Β°,280Β°,320Β° STEP 2: Immediately after applying an inverse trig function (and BEFORE dividing by 3!), find all solutions up to the end of the interval. Froflections: As mentioned before, in general you tend to get a pair of values per 360Β° (for any of sin/cos/tan), except for cos πœƒ=Β±1 or sin πœƒ =Β±1: Thus once getting your first pair of values (e.g. using sin 180βˆ’πœƒ or cos⁑(360βˆ’πœƒ) to get the second value), keep adding 360Β° to generate new pairs. STEP 3: Then do final manipulation to each value. 𝑦 𝑦= cos π‘₯ π‘₯ 90 180 270 360

22 Further Examples Solve sin (2π‘₯+30Β°)= in the interval 0≀π‘₯≀360Β°. ? 30°≀2π‘₯+30°≀750Β° 2π‘₯+30Β°=45Β°, 135Β°, 405Β°,495Β° 2π‘₯=15Β°,105Β°,375Β°,465Β° π‘₯=7.5Β°,52.5Β°,187.5Β°,232.5Β° To get from π‘₯ to 2π‘₯+30Β° we double and add 30Β°. So do the same to the upper and lower bound! Solve sin π‘₯ =2 cos π‘₯ in the interval 0≀π‘₯<300Β° ? tan π‘₯ =2 π‘₯= tan βˆ’1 2 =63.43Β°, Β° By dividing both sides by 𝐜𝐨𝐬 𝒙 , the sin π‘₯ becomes tan π‘₯ and the cos π‘₯ disappears, leaving a trig equation helpfully only in terms of one trig function.

23 Test Your Understanding
Edexcel C2 Jan 2013 Q4 ?

24 Exercise 10E Pearson Pure Mathematics Year 1/AS Page

25 Quadratics in sin/cos/tan
We saw that an equation can be β€˜quadratic in’ something, e.g. π‘₯βˆ’2 π‘₯ +1=0 is β€˜quadratic in π‘₯ ’, meaning that π‘₯ could be replaced with another variable, say 𝑦, to produce a quadratic equation 𝑦 2 βˆ’2𝑦+1=0. Solve 5 sin 2 π‘₯ +3 sin π‘₯ βˆ’2=0 in the interval 0≀π‘₯≀360Β°. Method 1: Use a substitution. Let 𝑦= sin π‘₯ Then 5 𝑦 2 +3π‘¦βˆ’2=0 5π‘¦βˆ’2 𝑦+1 =0 𝑦= 2 5 π‘œπ‘Ÿ 𝑦=βˆ’1 ∴ sin π‘₯ = 2 5 π‘œπ‘Ÿ sin π‘₯ =βˆ’1 𝒙=πŸπŸ‘.πŸ”Β°, πŸπŸ“πŸ”.πŸ’Β°, 𝒐𝒓 𝒙=πŸπŸ•πŸŽΒ° Method 2: Factorise without substitution. This is the same, but we β€˜imagine’ sin π‘₯ as a single variable and hence factorise immediately. 5 sin π‘₯ βˆ’2 sin π‘₯ +1 =0 sin π‘₯ = 2 5 π‘œπ‘Ÿ sin π‘₯ =βˆ’1 𝒙=πŸπŸ‘.πŸ”Β°, πŸπŸ“πŸ”.πŸ’Β°, 𝒐𝒓 𝒙=πŸπŸ•πŸŽΒ° ? ? Fropinion: I’d definitely advocate Method 2 provided you feel confident with it. Method 1 feels clunky.

26 More Examples ? ? Solve tan 2 πœƒ =4 in the interval 0≀π‘₯≀360Β°.
Missing the negative case would result in the loss of multiple marks. Beware! tan πœƒ =2 π‘œπ‘Ÿ tan πœƒ =βˆ’2 πœƒ=63.4Β°, 243.4Β° π‘œπ‘Ÿ πœƒ=βˆ’63.4Β°, 116.6Β°,296.6Β° βˆ’63.4Β° was outside the range so we had to add 180Β° twice. Solve 2 cos 2 π‘₯ +9 sin π‘₯ =3 sin 2 π‘₯ in the interval βˆ’180°≀π‘₯≀180Β°. ? 2 1βˆ’ sin 2 π‘₯ + sin π‘₯ =3 sin 2 π‘₯ 2βˆ’2 sin 2 π‘₯ + sin π‘₯ =3 sin 2 π‘₯ 5 sin 2 π‘₯ βˆ’ sin π‘₯ βˆ’2=0 5 sin π‘₯ +1 sin π‘₯ βˆ’2 =0 sin π‘₯ =βˆ’ 1 5 π‘œπ‘Ÿ sin π‘₯ =2 π‘₯=βˆ’168.5Β°, βˆ’11.5Β° Tip: We have an identity involving 𝑠 𝑖𝑛 2 and 𝑐 π‘œπ‘  2 , so it makes sense to change the squared one that would match all the others.

27 Test Your Understanding
Edexcel C2 Jan 2010 Q2 ?

28 Exercise 10F ? ? Pearson Pure Mathematics Year 1/AS Page 221-222
Extension [MAT C] In the range 0≀π‘₯<360Β°, the equation sin 2 π‘₯ +3 sin π‘₯ cos π‘₯ +2 cos 2 π‘₯ =0 Has how many solutions? There are multiple ways to do this, including factorising LHS to ( 𝐬𝐒𝐧 𝒙 + 𝐜𝐨𝐬 𝒙 )( 𝐬𝐒𝐧 𝒙 +𝟐 𝐜𝐨𝐬 𝒙 ), but dividing by 𝐜𝐨𝐬 𝟐 𝒙 gives: 𝐭𝐚𝐧 𝟐 𝒙 +πŸ‘ 𝐭𝐚𝐧 𝒙 +𝟐=𝟎 𝐭𝐚𝐧 𝒙 +𝟏 𝐭𝐚𝐧 𝒙 +𝟐 =𝟎 𝐭𝐚𝐧 𝒙 =βˆ’πŸ 𝒐𝒓 𝐭𝐚𝐧 𝒙 =βˆ’πŸ tan always gives a pair of solutions per πŸ‘πŸ”πŸŽΒ°, so there are 4 solutions. [MAT E] As π‘₯ varies over the real numbers, the largest value taken by the function sin 2 π‘₯ +4 cos π‘₯ equals what? πŸ’βˆ’πŸ’ 𝐜𝐨𝐬 𝟐 𝒙 +πŸ’ 𝐜𝐨𝐬 𝒙 +𝟏 𝟐 = βˆ’πŸ’ 𝐜𝐨𝐬 𝟐 𝒙 +πŸ’ 𝐜𝐨𝐬 𝒙 +πŸ“ 𝟐 = πŸ”βˆ’ πŸβˆ’πŸ 𝐜𝐨𝐬 𝒙 𝟐 𝟐 We can make 𝐜𝐨𝐬 𝒙 = 𝟏 𝟐 , thus giving a maximum value of πŸ” 𝟐 =πŸ‘πŸ”. 1 2 ? ?


Download ppt "P1 Chapter 10 :: Trigonometric Identities & Equations"

Similar presentations


Ads by Google