Presentation is loading. Please wait.

Presentation is loading. Please wait.

2.3 Momentum Momentum:

Similar presentations


Presentation on theme: "2.3 Momentum Momentum: "β€” Presentation transcript:

1 2.3 Momentum Momentum: 𝑝=π‘šπ‘£ (unit: kg m s-1)
Alternative definition of N2: 𝐹=π‘šπ‘Ž= βˆ†π‘ 𝑑 Impulse: change in momentum, βˆ†π‘=𝐹𝑑 Area under force-time-graph gives the impulse Momentum is ALWAYS conserved!!!

2 Ex 1: What is the momentum of a hockey puck with mass 170 g moving at 10 m s-1?

3 Ex 2: Which action requires more force, to block the puck (m = 0,17 kg, u = 10 m s-1) or to catch it? Both actions take 0.10 s. (041217)

4 Ex. 3: A force of 100 N from a racket acts on a tennis ball (m = 0
Ex. 3: A force of 100 N from a racket acts on a tennis ball (m = kg, u =20 ms-1) for s. Calculate: The impulse The change in velocity The final velocity

5 Collisions Total momentum before and after the collision are the same!
Inelastic collisions: (normal case) Momentum is conserved Formula: π‘š 1 𝑒 1 + π‘š 2 𝑒 2 = π‘š 1 𝑣 1 + π‘š 2 𝑣 2 Elastic collisions: (special case 1) ”Perfect bounce” Momentum and kinetic energy conserved Totally inelastic collisions: (special case 2) ”Stick together” Formula becomes: π‘š 1 𝑒 1 + π‘š 2 𝑒 2 = (π‘š 1 + π‘š 2 )𝑣 The direction is important!

6 Example 1: An ice skater (m = 49 kg) at rest catches a ball (m = 1 kg) with velocity 10 m s-1. What happens? Totally inelastic: π‘š 1 𝑒 1 + π‘š 2 𝑒 2 = (π‘š 1 + π‘š 2 )𝑣 π‘š 1 =49 kg, 𝑒 1 =0 m s-1 π‘š 2 =1 kg, 𝑒 2 =10 m s-1 49 kgβˆ™0 m s βˆ’1 +1 kgβˆ™10 m s βˆ’1 =(49 kg+1 kg)βˆ™π‘£ 𝑣= 1 kgβˆ™10 m s βˆ’1 49 kg+1 kg =0.2 m s βˆ’1 Answer: the skater (holding the ball) will start moving with 0.2 m s-1 in the same direction as the ball that hit her

7 Example 2: A car (m = 1000 kg, v = 100 km h-1) and a truck (m = kg, v = 80 km h-1) collide head on and stick together. What happens? Totally inelastic: π‘š 1 𝑒 1 + π‘š 2 𝑒 2 = (π‘š 1 + π‘š 2 )𝑣 π‘š 1 =1000 kg, 𝑒 1 =100 km h-1 π‘š 2 = kg, 𝑒 2 = - 80 km h-1 1000 kgβˆ™100 km h βˆ’1 βˆ’15000 kgβˆ™80 km h βˆ’1 =(1000 kg kg)βˆ™π‘£ 𝑣= 1000 kgβˆ™100 km h βˆ’1 βˆ’15000 kgβˆ™80 km h βˆ’ kg kg =βˆ’68.75 km h βˆ’1 Answer: The combined wreck will move at 69 km h-1 in the direction of the truck

8 Example 3: A car (m = 1000 kg, v = 100 km h-1) and a motor cycle (m = 250 kg, v = 80 km h-1) collide head on. Right after the collision the velocity of the car is 60 km h-1. What happens with the motor cycle? Inelastic: π‘š 1 𝑒 1 + π‘š 2 𝑒 2 = π‘š 1 𝑣 1 + π‘š 2 𝑣 2 π‘š 1 =1000 kg, 𝑒 1 =100 km h-1, 𝑣 1 =60 km h-1 π‘š 2 =250 kg, 𝑒 2 = - 80 km h-1 1000 kgβˆ™100 km h βˆ’1 βˆ’250 kgβˆ™80 km h βˆ’1 =1000 kgβˆ™60 km h βˆ’ kgβˆ™ v 2 𝑣= 1000 kgβˆ™100 km h βˆ’1 βˆ’250 kgβˆ™80 km h βˆ’1 βˆ’1000 kgβˆ™60 km h βˆ’ kg =80 km h βˆ’1 Answer: The motor cycle bounces back at 80 km h-1 in the direction of the car

9 Example 4: A Volvo (m = 2000 kg, v = 50 km h-1 from the South) and a Nissan (m = 1500 kg, v = 40 km h-1 from the West) collide at a crossroads and stick together. What happens? Totally inelastic in 2D: π‘š 1 𝑒 1π‘₯ + π‘š 2 𝑒 2π‘₯ = (π‘š 1 + π‘š 2 ) 𝑣 π‘₯ π‘š 1 𝑒 1𝑦 + π‘š 2 𝑒 2𝑦 = (π‘š 1 + π‘š 2 ) 𝑣 𝑦 π‘š 1 =2000 kg, 𝑒 1π‘₯ =0 km h-1, 𝑒 1𝑦 =50 km h-1 π‘š 2 =1500 kg, 𝑒 2π‘₯ = 40 km h-1, 𝑒 1𝑦 =0 km h-1 X-axis: 𝑣 π‘₯ = 1500 π‘˜π‘”βˆ™40 π‘˜π‘š β„Ž βˆ’ π‘˜π‘”+1500 π‘˜π‘” =17.14β€¦π‘˜π‘š β„Ž βˆ’1 Y-axis: 𝑣 π‘₯ = 2000 π‘˜π‘”βˆ™50 π‘˜π‘š β„Ž βˆ’ π‘˜π‘”+1500 π‘˜π‘” =28.57β€¦π‘˜π‘š β„Ž βˆ’1 Total velocity: 𝑣= β€¦π‘˜π‘š β„Ž βˆ’ β€¦π‘˜π‘š β„Ž βˆ’ =33.31β€¦π‘˜π‘š β„Ž βˆ’1 Angle: 𝛼= tan βˆ’ β€¦π‘˜π‘š β„Ž βˆ’ β€¦π‘˜π‘š β„Ž βˆ’1 =59.0…° Answer: The combined wreck continues at 33 km h-1 at an angle of 59Β° North of East


Download ppt "2.3 Momentum Momentum: "

Similar presentations


Ads by Google