Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hidden charm spectroscopy from B-factories

Similar presentations


Presentation on theme: "Hidden charm spectroscopy from B-factories"— Presentation transcript:

1 Hidden charm spectroscopy from B-factories
CHARM 2010, 21 Oct 2010, Beijing Hidden charm spectroscopy from B-factories Roman Mizuk (ITEP, Moscow)

2 Contents Conventional charmonium 3940 family 1– – states from ISR
(1S) →  + cc Conventional charmonium  → c , c(2S) 3940 family Update on B → K J/ 1– – states from ISR e+e- → Ds(*)+ Ds(*)– cross section J/ states, Z± X(3872) → talk by Alex Bondar

3  → c → KsK+- 470 fb-1 Select using kinematics ISR rich sample
PRD81, (2010) 470 fb-1 no tag mode Select using kinematics ISR rich sample c J/ J/ from ISR c Simultaneous fit  M (MeV)  (MeV)  BF(cKK) (keV) 2982.20.41.5 31.71.20.8 0.3790.0090.031 agree CLEO : 0.0220.028 PDG’08 : 0.440.04

4  → c → KsK+- M(c) (c) 470 fb-1 Included in PDG’10:
PRD81, (2010) 470 fb-1 Included in PDG’10: M(c) (c) (c) : dominates world average.

5 Not seen in 4-meson final state (4, 2K2, 4K).
Status of c(2S) 2002 Observed in B → K (KSK-+) confirmed in , double cc. the only known decay channel (before summer 2010) Not seen in 4-meson final state (4, 2K2, 4K). Belle EPJC53, 1 (2008) M(c) World average M = 3637 ± 4MeV not quite consistent  = 14 ± 7 MeV large error  Motivation to study more final states.

6 Observation of  → c(2S) → 6 prong
Preliminary no tag mode Presented at ICHEP2010 923 fb-1 + – + – + – K+ K– + – + – KS K+ – + – c c0 c2 c(2S)  pT*<0.1GeV pT unbalanced Signals of c , c0 , c2 , c(2S) in pT balanced component only + sizeable non-resonant  → 6 prong production.  from  formation process

7 Observation of  → c(2S) → 6 prong
Preliminary no tag mode 923 fb-1 + – + – + – K+ K– + – + – KS K+ – + – c c0 c2 c(2S) c0 Events/5 MeV c2 c(2S)

8 Observation of  → c(2S) → 6 prong
Preliminary no tag mode 923 fb-1 + – + – + – K+ K– + – + – KS K+ – + – ± 1.6 ± 2.3 ± 1.6 ± 2.8 ±1.8 ± 2.4 MeV M (c) 10.7 ± 4.9 1.4 15.9 ± 5.7 MeV  (c) +6.3 –1.4   BF 20.1 ± 3.7 ± 3.2 10.2 ± 2.3 ± 3.4 30.7 ± 3.9 ± 3.7 eV 8.5 6.2 8.7 Significance c.f.   BF(c → KSK+–) = 68  21 eV estimate from CLEO PRL92, (2004) reference c0 Events/5 MeV c2 c(2S)

9 Observation of  → c(2S) → 6 prong
Preliminary no tag mode 923 fb-1 + – + – + – K+ K– + – + – KS K+ – + – ± 1.6 ± 2.3 ± 1.6 ± 2.8 ±1.8 ± 2.4 MeV M (c) 10.7 ± 4.9 1.4 15.9 ± 5.7 MeV  (c) +6.3 –1.4   BF 20.1 ± 3.7 ± 3.2 10.2 ± 2.3 ± 3.4 30.7 ± 3.9 ± 3.7 eV 8.5 6.2 8.7 Significance Belle average over 3 decay modes: M (c) = ± 1.1 ± 2.5 ± 5.0 MeV  (c) = ± 3.2 ± 2.6 ± 2.0 MeV last error from interference with continuum Observation or evidence for new decay modes: c0 ,  c2 → K+K-2(+-) , KsK+-+ c → KsK+-+-

10  → c(2S) → KsK+- / K+K-+-0
no tag mode Presented at ICHEP2010 521 fb-1 Preliminary KsK+- c(2S) c2 c M=3638.31.50.5 MeV  = 4.42.5 MeV N(c)= 6207030 J/ KsK+- c(2S) K+K-+-0 first observation N(c)= 1190130180 c c0 c2 c(2S) J/ K+K-+-0

11 M,  – significant improvement in accuracy.
Summary on c(2S) Average of PDG’10, Belle and BaBar  (c) = 12.3 ± 3.1 MeV c.f. (c) = 28.6 ± 2.2 MeV M,  – significant improvement in accuracy.  (c) <  (c) ?

12 Search for (1S) →  charmonium
5.7 fb-1 102106 (1S) C-parity = + PRD82,051504R (2010) cJ → J/  Expectations: Gao et al., hep-ph/ c1 c0 bb cc c2 J/ s.b. State BF (10-5) Expect. UL c0 3 <65 c1 1 <2.3 c2 0.6 <0.76 c 5 <5.7 c → KsK+- K+K- 2(K+K-) 2(+-) 3(+-) (90%CL) J/ c e+e- → ISR J/ c s.b. No evidence for (1S) →  charmonium, no contradiction with expectations.

13 Search for (1S) →  charmonium-like states
C-parity = + PRD82,051504R (2010) X(3872) → +- J/ State BF (10-5) Expect. UL c0 3 <65 c1 1 <2.3 c2 0.6 <0.76 c 5 <5.7 X(3872) → +- J/ <0.16 X(3872) → +-0 J/ <0.28 X(3915) →  J/ <0.30 Y(4140) →  J/ <0.22 e+e- → ISR  one X(3872) (90%CL) X(3872), X(3915) → +-0 J/  J/ – no events No evidence for (1S) →  [X(3872), X(3915) or Y(4110)]. No evidence for excited charmonium states below 4.8 GeV.

14 States near 3940 MeV

15 see talk by Pavel Pakhlov
X(3940) Y(3940) Z(3930) Probably the cc2’ e+e-  J/y DD* BK wJ/y gg  DD PRL94, PRL96, JPC=2++ PRL100, M(wJ/y) M(DD) M(DD*) M=3940 ± 11 MeV G = 92 ± 24 MeV M = 3929 ± 5 ± 2 MeV G = 29 ± 10 ± 2 MeV M = ± 6 MeV G = ± 12 MeV -6 -15 + X(4160) BaBar: PRL 101, BaBar: PRD81, M=3914 ± 5 MeV G = 33 ± 10 MeV M = ± 2.7 ± 1.1 MeV G = 21.3 ± 6.8 ± 3.6 MeV see talk by Pavel Pakhlov

16 Update on B → K J/ Main modification:
348/fb: PRL 101, Main modification: lower M(+-0) threshold  lower M(J/ ) threshold 426/fb: PRD 82,  signal of X(3872)  update on Y(3940) parameters M= ±2.0 MeV G= 31+10±5 MeV -3.5 -8 M(wJ/y)

17 above open charm threshold.
Peak in gg  wJ/y 2010 PRL104, (2010) Mass, MeV X(3940) X(3915) 7.7s M = 3914  3  2 MeV G = 23  MeV -8 c2 3s Y(3940) X(3915) M(wJ/y) Width, MeV Assumption X(3915)=Y(3940) is compatible with data. JY(3940)  1 If X(3915)=Z(3930)=cc2’  Huge for charmonium above open charm threshold.

18 e+e– → 1–– final states via ISR

19 Above DD threshold, decay to open charm?
e+e– → ISR J/ () +- : Y(4008,4260,4360,4660) PRL99, 670/fb PRL99, 550/fb PRL98, 298/fb arXiv: 454/fb Above DD threshold, decay to open charm?

20 without radiative corrections
e+e– → open charm Y(4008) ψ(4040) ψ(4160) Y(4260) Y(4360) ψ(4415) Y(4660) ISR without radiative corrections DD DD D+D*- DD* D*+D*- D*D* D0D-π+ Y(4660) D0D*-π+ ΛcΛc X(4630) No peaks of Y states, except X(4630) → cc close to Y(4660). tetraquark?

21 Search for hybrids in their favorite decay mode
hybrid → D** D 1 PRD80, R (2010) → (D*π) D P-wave Y(4260) ψ(4415) DD* ψ(4415) Y(4260) No signal of Y´s UL at 90% CL

22 e+e– → ISR Ds(*)+Ds(*)–
PRD82, (2010) PRD80, (2009) DsDs Ds* Ds Ds* Ds*  (nb) (4040) (4160) (4160) (4415) (4415)  (nb) Preliminary (e+e– → Ds(*)+Ds(*)–) << (e+e– → D(*)D(*)) Ds+Ds*– channel dominates no Y signals at 95%C.L.

23 DD DD* D*D* DDπ DD*π Λ+c Λ–c D(*)+s D(*)–s
Inclusive cross-section is now saturated by exclusive contributions. Efforts to fit are welcome.

24 States decaying into J/

25 Update from CDF is available.
Y(4140)  J/  by CDF PRL102, (2009) B+  Y(4140) K+ >3.8 14±5 ev M = ± 2.9 ± 1.2 MeV  = ± 3.7 MeV D*sD*s molecule? [cscs] tetraquark? -5.0 Br(B+→Y(4140)K+) Br(Y→J/) CDF (9.0 ± 3.4 ± 2.9)10-6 Belle <6  at 90% CL Update from CDF is available.

26 Study of    J/ No Y(4140) Disfavor DS*+DS*- molecule X(4350)
825 fb-1 PRL104,11204 (2010) X(4350) No Y(4140) Disfavor DS*+DS*- molecule X(4350) M = ± 0.7 MeV Γ= ± 4.1 MeV -5.1 - 9.1 Y(4140) JP=0+: Γγγ BF = ± 1.1 eV JP=2+: Γγγ BF = ± 0.3 eV -2.3 -0.5 Excited P-wave charmonium? Tetraquark? Fl. Stancu, JPG37, (2010) D*sD*s0 molecule? J.R.Zhang et al., arXiv:

27 Charged states

28 Z(4430)± → ±  peak “K* Veto” : 45 +35 → 107 +110 MeV -18 - 70
Dalitz plot of B → K ±  PRL100, (2008) Z(4430) M ( ) GeV M2(±’) GeV2 6.5 M2() GeV2 “K* Veto” PRD79, (2009) BaBar: null result, significance ~2. K* Belle: Dalitz analysis  PRD80, (2009) K*(1430) : → MeV -18 - 70 Significance ~6.5 is confirmed.

29 BaBar compared Belle and BaBar data and found that they are statistically consistent
Significance of Z(4430) at BaBar is ~2 Clash? Significance of Z(4430) at Belle is 6.5

30 Belle and BaBar data look very similar…
with K* veto Belle BaBar Result of Belle Dalitz plot analysis. The same curve divided by to account for smaller statistics at BaBar. M ( ) GeV M ( ) GeV …clustering in M ( ) is present in both data samples, only interpretation is different.

31 BaBar analysis of B → K  
Rectangular Dalitz plot Background shape for 1-dimensional M() fit background estimation procedure cos K* M() GeV M(K) GeV BaBar performed cross-check: Result: bump in background with ~160 MeV Input: Z(4430) signal with =45 MeV background estimation procedure N(Z) from fit is 10% lower than input N(Z)  correction M() GeV M() GeV My comment: this approach is safe for Z(4430)= 45MeV << bump~ 160MeV. Is it sensitive to wider Z(4430) with = MeV ? - 70 BaBar considered only Z(4430) = 45 MeV.

32 Input from TEVATRON or LHC-B is needed.
Statistics at B-factories is insufficient to say “final word” about existence of Z(4430)+. Input from TEVATRON or LHC-B is needed.

33 Dalitz plot for B0 → K- π+ c1
1 2 3 4 PRD79, (2009) M(c1) all low-lying K* + two (π+ c1) resonances Fit model M(K) all low-lying K* 1 2 3 4 1 2 3 4 No results from other experiments yet. 33

34 Conclusions Status of XYZ states remained unchanged over the last year
no new states were reported at B-factories no originally reported states were negated Recent results:  → c , c(2S) : precise meas. of M and , new decay channels Update on B → K J/ Meas. of e+e- → Ds(*)+ Ds(*)– cross section B-factories completed operation, but analysis of their data is crucial for our understanding of hidden charm. Thank you!


Download ppt "Hidden charm spectroscopy from B-factories"

Similar presentations


Ads by Google