Presentation is loading. Please wait.

Presentation is loading. Please wait.

The statistical analysis of surface data

Similar presentations


Presentation on theme: "The statistical analysis of surface data"— Presentation transcript:

1 The statistical analysis of surface data
Keith Worsley, McGill Jonathan Taylor, Stanford Robert Adler, Technion

2 Isotropic Gaussian random field in 2D
Z ( s ) N ; 1 i a n o t r p c G u d m e l , 2 < w h = V @ P x S E C \ : g z + A 3 v F W H M 4 Intrinsic volumes or Minkowski functionals EC densities Z(s) white noise filter = * FWHM

3 Volumes of tubes: Getting the P-value of Gaussian fields directly (Siegmund, Sun, 1989, 1993)
x i m a t e h G u s n l d b y K - L v f c j ( ) w Z N ; 1 : X = U , Â . C g T 2 P S V H W 9 3 k & D + E

4 Jonathan Taylor’s Gaussian Kinematic Formula (2003) for functions of non-isotropic Gaussian fields
< D . Z ( ) = 1 ; : n b i d m o h G a u r l T f , g  F c X x R z j E C \

5 Beautiful symmetry: L i p s c h t z - K l n g u r v a e ( S ) E C d e
\ X ) = D d L R L i p s c h t z - K l n g u r v a e d ( S ) E C d e n s i t y ( R ) Steiner-Weyl Tube Formula (1930) Taylor Kinematic Formula (2003) Put a tube of radius r about the search region λS and rejection region R: Z2~N(0,1) r R r Tube(λS,r) Tube(R,r) = S d @ Z s λS Z1~N(0,1) Find volume or probability, expand as a power series in r, pull off coefficients: V ( T u b e S ; r ) = D X d 2 + 1 L P ( T u b e R ; r ) = 1 X d 2 !

6 SurfStat F i t l n e a r m x d ® c s o Y » N ( X ¯ ; V µ ) b y R M L u
1 N ( X p ; V q ) b y R M L u g h , v w : = 2 z j f < \ " # - + / T S P E C 3

7 Cluster extent, rather than peak height, for inference (Friston, 1994)
Choose a lower level, e.g. t=3.11 (P=0.001) Find clusters i.e. connected components of excursion set Measure cluster extent by resels Distribution: fit a quadratic to the peak: Distribution of maximum cluster extent: Bonferroni on N = #clusters ~ E(EC). Z D=1 L D ( c l u s t e r ) extent t Peak height L D ( c l u s t e r ) Y Â k s

8 MS lesions and cortical thickness (Charil et al., 2007)
Idea: MS lesions interrupt neuronal signals, causing thinning in down-stream cortex Data: n = 425 mild MS patients 5.5 5 4.5 4 Average cortical thickness (mm) 3.5 3 2.5 Correlation = , T = (423 df) 2 1.5 10 20 30 40 50 60 70 80 Total lesion volume (cc)

9 Thresholding? Correlation random field
Correlation between 2 fields at 2 different locations, searched over all pairs of locations, one in S, one in T: MS data: P=0.05, ν=424, c=0.325, T=6.48 P m a x s 2 S ; t T C ( ) c E f : g = d i X j L h 1 ! + b k l

10 References Adler, R.J. and Taylor, J.E. (2007). Random fields and geometry. Springer. Adler, R.J., Taylor, J.E. and Worsley, K.J. (2008). Random fields, geometry, and applications. In preparation.


Download ppt "The statistical analysis of surface data"

Similar presentations


Ads by Google