Presentation is loading. Please wait.

Presentation is loading. Please wait.

GCSE Completing The Square

Similar presentations


Presentation on theme: "GCSE Completing The Square"β€” Presentation transcript:

1 GCSE Completing The Square
Dr J Frost @DrFrostMaths Last modified: 5th March 2018

2 Starter Expand the following brackets. Do you notice any relationship between the original expression and coefficient of π‘₯ in the expanded expression in each case? Key Term: The coefficient of a term is the number on front of it. So the coefficient of 3π‘₯ is 3 and the coefficient of 5 π‘₯ 2 is 5. π‘₯+1 2 = π‘₯ 2 +𝟐π‘₯+1 π‘₯+3 2 = π‘₯ 2 +πŸ”π‘₯+9 π‘₯βˆ’4 2 = π‘₯ 2 βˆ’πŸ–π‘₯+16 π‘₯+π‘Ž 2 = π‘₯ 2 +πŸπ’‚π‘₯+ π‘Ž 2 ? ? ? ? ? Relationship The coefficient of 𝒙 is double the number after the 𝒙 in the bracket.

3 Therefore… ? ? ? ? ? ? ? π‘₯ 2 +10π‘₯ β†’ π‘₯+5 2 βˆ’25 π‘₯ 2 +8π‘₯ β†’ π‘₯+4 2 βˆ’16
Therefore, it seems as if we can halve the coefficient of 𝒙 to get the missing number in π‘₯+__ 2 Put the following in the form π‘₯+π‘Ž 2 +𝑏 Consider the expansion of π‘₯+5 2 : π‘₯+5 2 = π‘₯ 2 +10π‘₯+25 We only want the β€œ π‘₯ 2 +10π‘₯” so we β€˜throw away’ the 25 by subtracting it. π‘₯ 2 +10π‘₯ β†’ π‘₯+5 2 βˆ’25 ? π‘₯ 2 +8π‘₯ β†’ π‘₯+4 2 βˆ’16 ? Because the form required was β€œ π‘₯+π‘Ž 2 +𝑏”, we might expect to have to write our answer as: π‘₯ [βˆ’25] However, since this is effectively the same as π‘₯+5 2 βˆ’25, this form is preferred; it is cleaner! π‘₯ 2 +2π‘₯ β†’ π‘₯+1 2 βˆ’1 ? π‘₯ 2 +π‘₯ β†’ π‘₯ βˆ’ 1 4 ? π‘₯ 2 βˆ’6π‘₯ β†’ π‘₯βˆ’3 2 βˆ’9 ? Because of the βˆ’ sign, you might be tempted to think that the answer is π‘₯βˆ’ But note that: π‘₯βˆ’3 2 = π‘₯ 2 βˆ’6π‘₯+9 We don’t want the +9, so we subtract just as before. π‘₯ 2 βˆ’20π‘₯ β†’ π‘₯βˆ’10 2 βˆ’100 ? π‘₯ 2 βˆ’12π‘₯ β†’ π‘₯βˆ’6 2 βˆ’36 ?

4 Further Examples ? ? ? ? π‘₯ 2 +8π‘₯+3 β†’ π‘₯+4 2 βˆ’16+3 = π‘₯+4 2 βˆ’13
! Putting a quadratic expression in the form π‘₯+π‘Ž 2 +𝑏 is known as β€˜completing the square’. The key motivation is that while π‘₯ 2 +4π‘₯+9 contains an π‘₯ 2 term and a π‘₯ term, its β€˜completed square’ π‘₯ only contains a single 𝒙. We will see later why this has a number of useful applications. Put the following in the form π‘₯+π‘Ž 2 +𝑏 π‘₯ 2 +8π‘₯ β†’ π‘₯+4 2 βˆ’ = π‘₯+4 2 βˆ’13 ? The +3 is still there! π‘₯ 2 βˆ’2π‘₯ β†’ π‘₯βˆ’1 2 βˆ’ = π‘₯ ? π‘₯ 2 +12π‘₯βˆ’ β†’ π‘₯+6 2 βˆ’36βˆ’ = π‘₯+4 2 βˆ’37 ? π‘₯ 2 βˆ’π‘₯ β†’ π‘₯βˆ’ βˆ’ = π‘₯βˆ’ ?

5 Test Your Understanding
Put the following in the form π‘₯+π‘Ž 2 +𝑏 ? π‘₯ 2 +16π‘₯ β†’ π‘₯+8 2 βˆ’16 π‘₯ 2 +10π‘₯ β†’ π‘₯+5 2 βˆ’ = π‘₯ ? π‘₯ 2 βˆ’6π‘₯βˆ’ β†’ π‘₯βˆ’3 2 βˆ’9βˆ’ = π‘₯βˆ’3 2 βˆ’14 ?

6 Exercise 1 Put the following in the form π‘₯+π‘Ž 2 +𝑏 π‘₯ 2 +7π‘₯+2 = 𝒙+ πŸ• 𝟐 𝟐 βˆ’ πŸ’πŸ πŸ’ π‘₯ 2 βˆ’π‘₯+3 = π’™βˆ’ 𝟏 𝟐 𝟐 + 𝟏𝟏 πŸ’ π‘₯ 2 βˆ’ 1 3 π‘₯ = π’™βˆ’ 𝟏 πŸ” 𝟐 + 𝟐 πŸ— ? π‘₯ 2 +20π‘₯ = 𝒙+𝟏𝟎 𝟐 βˆ’πŸπŸŽπŸŽ π‘₯ 2 βˆ’2π‘₯ = π’™βˆ’πŸ 𝟐 βˆ’πŸ π‘₯ 2 +4π‘₯βˆ’1= 𝒙+𝟐 𝟐 βˆ’πŸ“ π‘₯ 2 +6π‘₯+3= 𝒙+πŸ‘ 𝟐 βˆ’πŸ” π‘₯ 2 βˆ’2π‘₯+5= π’™βˆ’πŸ 𝟐 +πŸ’ π‘₯ 2 βˆ’10π‘₯βˆ’2= π’™βˆ’πŸ“ 𝟐 βˆ’πŸπŸ• π‘₯ 2 +20π‘₯+100= 𝒙+𝟏𝟎 𝟐 π‘₯ 2 βˆ’8π‘₯+1= π’™βˆ’πŸ’ 𝟐 βˆ’πŸπŸ“ π‘₯ 2 +3π‘₯ = 𝒙+ πŸ‘ 𝟐 𝟐 βˆ’ πŸ— πŸ’ π‘₯ 2 βˆ’5π‘₯+1 = π’™βˆ’ πŸ“ 𝟐 𝟐 βˆ’ 𝟐𝟏 πŸ’ ? 3 a 1 a ? ? b b ? c ? c ? d ? e π‘₯ 2 +π‘Žπ‘₯ = 𝒙+ 𝒂 𝟐 𝟐 βˆ’ 𝒂 𝟐 πŸ’ ? N a ? f ? ? π‘₯ 2 +2π‘Žπ‘₯+ π‘Ž 2 = 𝒙+𝒂 𝟐 b g ? h ? 2 a ? b

7 What if the coefficient of π‘₯ 2 is not 1?
Put 2 π‘₯ 2 +8π‘₯+7 in the form π‘Ž π‘₯+𝑏 2 +𝑐 2 π‘₯ 2 +4π‘₯ +7 =2 π‘₯+2 2 βˆ’4 +7 =2 π‘₯+2 2 βˆ’8+7 =2 π‘₯+2 2 βˆ’1 ? Factorise the coefficient of π‘₯ 2 out of the first two terms (leave last term outside brackets) ? Complete the square within brackets (you should have a bracket within a bracket) ? Expand outer bracket ? Final simplification. Put 3 π‘₯ 2 βˆ’6π‘₯+11 in the form π‘Ž π‘₯+𝑏 2 +𝑐 Put 4 π‘₯ 2 +40π‘₯βˆ’5 in the form π‘Ž π‘₯+𝑏 2 +𝑐 3 π‘₯ 2 βˆ’2π‘₯ +11 =3 π‘₯βˆ’1 2 βˆ’1 +11 =3 π‘₯βˆ’1 2 βˆ’3+11 =3 π‘₯βˆ’ ? 4 π‘₯ 2 βˆ’2π‘₯ +11 =4 π‘₯βˆ’1 2 βˆ’1 +11 =4 π‘₯βˆ’1 2 βˆ’4+11 =4 π‘₯βˆ’ ?

8 Harder Examples ? ? Put 3βˆ’12π‘₯βˆ’ π‘₯ 2 in the form π‘Ž π‘₯+𝑏 2 +𝑐
βˆ’ 1π‘₯ 2 βˆ’12π‘₯+3 =βˆ’1 π‘₯ 2 +12π‘₯ +3 =βˆ’1 π‘₯+6 2 βˆ’36 +3 =βˆ’ π‘₯ =βˆ’ π‘₯ π‘œπ‘Ÿ 39βˆ’ π‘₯+6 2 Put π‘₯ 2 +4π‘₯βˆ’3 in the form π‘Ž π‘₯+𝑏 2 +𝑐 = π‘₯ 2 +40π‘₯ βˆ’3 = π‘₯ βˆ’400 βˆ’3 = π‘₯ βˆ’40βˆ’3 = π‘₯ βˆ’43 ?

9 Test Your Understanding
Put 5 π‘₯ 2 +20π‘₯+7 in the form π‘Ž π‘₯+𝑏 2 +𝑐 =5 π‘₯ 2 +4π‘₯ +7 =5 π‘₯+2 2 βˆ’4 +7 =5 π‘₯+2 2 βˆ’20+7 =5 π‘₯+2 2 βˆ’13 ? Put π‘₯ 2 βˆ’3π‘₯+7 in the form π‘Ž π‘₯+𝑏 2 +𝑐 = π‘₯ 2 βˆ’12π‘₯ +7 = π‘₯βˆ’6 2 βˆ’36 +7 = π‘₯βˆ’6 2 βˆ’9+7 = π‘₯βˆ’6 2 βˆ’2 ?

10 Exercise 2 Put the following in the form π‘Ž π‘₯+𝑏 2 +𝑐 3 π‘₯ 2 +6π‘₯βˆ’2 =πŸ‘ 𝒙+𝟏 𝟐 βˆ’πŸ“ 2 π‘₯ 2 βˆ’12π‘₯+1 =𝟐 π’™βˆ’πŸ‘ 𝟐 βˆ’πŸπŸ• 4 π‘₯ 2 βˆ’40π‘₯+11 =πŸ’ π’™βˆ’πŸ“ 𝟐 βˆ’πŸ–πŸ— 2 π‘₯ 2 +24π‘₯+70 =𝟐 𝒙+πŸ” 𝟐 βˆ’πŸ 5 π‘₯ 2 βˆ’60π‘₯+10 =πŸ“ π’™βˆ’πŸ” 𝟐 βˆ’πŸπŸ•πŸŽ 3 π‘₯ 2 +12π‘₯βˆ’1 =πŸ‘ 𝒙+𝟐 𝟐 βˆ’πŸπŸ‘ ? 1 a b ? c ? d ? e ? f ? βˆ’ π‘₯ 2 +8π‘₯+6 =βˆ’ π’™βˆ’πŸ’ 𝟐 +𝟐𝟐 βˆ’ π‘₯ 2 βˆ’10π‘₯+5 =βˆ’ 𝒙+πŸ“ 𝟐 +πŸ‘πŸŽ βˆ’ π‘₯ 2 +6π‘₯βˆ’2 =βˆ’ π’™βˆ’πŸ‘ 𝟐 +πŸ• 1βˆ’2π‘₯βˆ’ π‘₯ =βˆ’ 𝒙+𝟏 𝟐 +𝟐 βˆ’2 π‘₯ 2 +12π‘₯βˆ’20 =βˆ’πŸ π’™βˆ’πŸ‘ 𝟐 βˆ’πŸ 5+10π‘₯βˆ’5 π‘₯ =βˆ’πŸ“ π’™βˆ’πŸ 𝟐 +𝟏𝟎 2 a ? b ? c ? d ? e ? f ? 1 3 π‘₯ 2 +2π‘₯+1 = 𝟏 πŸ‘ 𝒙+πŸ‘ 𝟐 βˆ’πŸ π‘₯ 2 βˆ’4π‘₯+13= 𝟏 πŸ“ π’™βˆ’πŸπŸŽ 𝟐 βˆ’πŸ• π‘₯ 2 +π‘₯βˆ’1 = 𝟏 πŸ” 𝒙+πŸ‘ 𝟐 βˆ’ πŸ“ 𝟐 ? 3 a ? b ? c

11 Why complete the square?
There are 3 major applications of completing the square, two of which we will look at: 1 :: Solving Equations β€œ(a) Write π‘₯ 2 +4π‘₯βˆ’7 in the form π‘₯+π‘Ž 2 +𝑏. (b) Hence determine the exact solutions of: π‘₯ 2 +4π‘₯βˆ’7=0 Solving quadratic equations in this way also allows us to derive the quadratic formula! (The proof is later in these slides) 2 :: Finding the Turning Point of a Parabola β€œDetermine the turning point of the line with equation 𝑦= π‘₯ 2 βˆ’4π‘₯+5” Key Term: A parabola is the name of a line which has a quadratic equation. 3 :: (Further Maths A Level) Integrating reciprocals of quadratics β€œDetermine π‘₯ 2 βˆ’4π‘₯+5 𝑑π‘₯ ” ∫ means β€œintegrate”. This allows us to find the area under a graph. You won’t need to worry about this for some time!

12 Application #1 :: Solving by Completing the Square
a) Write π‘₯ 2 +4π‘₯βˆ’7 in the form π‘₯+π‘Ž 2 +𝑏 b) Hence, determine the exact solutions of π‘₯ 2 +4π‘₯βˆ’7=0 a ? π‘₯+2 2 βˆ’4βˆ’7 = π‘₯+2 2 βˆ’11 π‘₯+2 2 βˆ’11=0 π‘₯+2 2 =11 π‘₯+2 =Β± 11 π‘₯=βˆ’2Β± 11 b ? Because π‘₯ now only appears once in the equation, we can use our β€˜changing the subject’ skills to make π‘₯ the subject. ? ? Don’t forget the Β±. Suppose for example we were solving π‘₯ 2 =4. π‘₯=Β±2 because 2 2 =4 and βˆ’2 2 =4 We tend to write π‘ŽΒ± 𝑏 rather than Β± 𝑏 +π‘Ž to avoid ambiguity of what is included under the √.

13 Further Examples ? ? a) Write π‘₯ 2 βˆ’6π‘₯+3 in the form π‘₯+π‘Ž 2 +𝑏
b) Hence, determine the exact solutions of π‘₯ 2 βˆ’6π‘₯+3=0 ? π‘₯βˆ’3 2 βˆ’9+3=0 π‘₯βˆ’3 2 βˆ’6=0 π‘₯βˆ’3 2 =6 π‘₯βˆ’3=Β± 6 π‘₯=3Β± 6 a) Write 2 π‘₯ 2 +8π‘₯βˆ’1 in the form π‘Ž π‘₯+𝑏 2 +𝑐 b) Hence, determine the exact solutions of 2 π‘₯ 2 +8π‘₯+1=0 ? 2 π‘₯ 2 +4π‘₯ βˆ’1 =2 π‘₯+2 2 βˆ’4 βˆ’1 =2 π‘₯+2 2 βˆ’8βˆ’1 =2 π‘₯+2 2 βˆ’9 2 π‘₯+2 2 βˆ’9=0 2 π‘₯+2 2 =9 π‘₯+2 2 = π‘₯+2=Β± π‘₯=βˆ’2Β±

14 Test Your Understanding
a) Write π‘₯ 2 +10π‘₯βˆ’4 in the form π‘₯+π‘Ž 2 +𝑏 b) Hence, determine the exact solutions of π‘₯ 2 +10π‘₯βˆ’4=0 ? π‘₯+5 2 βˆ’29=0 π‘₯+5=Β± 29 π‘₯=βˆ’5Β± 29 a) Write 3 π‘₯ 2 βˆ’30π‘₯+71 in the form π‘Ž π‘₯+𝑏 2 +𝑐 b) Hence, determine the exact solutions of 3 π‘₯ 2 βˆ’30π‘₯+11=0 ? 3 π‘₯ 2 βˆ’10π‘₯ +71 =3 π‘₯βˆ’5 2 βˆ’ =3 π‘₯βˆ’5 2 βˆ’75+71 =3 π‘₯βˆ’5 2 βˆ’4 3 π‘₯βˆ’5 2 βˆ’4=0 π‘₯βˆ’5 2 = 4 3 π‘₯βˆ’5=Β± π‘₯=5Β±

15 Application #2 :: Minimum/Maximum Values
Completing the square also allows us to find the minimum or maximum value of a quadratic. For the quadratic expression π‘₯ 2 βˆ’4π‘₯+11, Determine its minimum value. Determine the value of π‘₯ for which this minimum occurs. ? π‘₯βˆ’2 2 βˆ’4+11 = π‘₯βˆ’ First complete the square. Let’s experiment with different values of π‘₯ to see what gives us the smallest value: π‘₯= β†’ 0βˆ’ =11 π‘₯= β†’ 1βˆ’ =8 π‘₯= β†’ 2βˆ’ =7 π‘₯= β†’ =8 So the minimum value of π‘₯ 2 βˆ’4π‘₯+11 appears to be 7, which occurs when π‘₯=2. But why is this? Anything squared is at least 0. So we choose 𝒙 such that the squared term is 0 in order to minimise it. ? ? ? ? ? ? ?

16 Further Examples ? ? For the quadratic expression π‘₯ 2 +6π‘₯+5,
Determine its minimum value. Determine the value of π‘₯ for which this minimum occurs. ? = π‘₯+3 2 βˆ’9+5 = π‘₯+3 2 βˆ’4 We want the squared term to be 0. This occurs when π‘₯=βˆ’3. Then the minimum value will be 0 2 βˆ’4=βˆ’4 ! The minimum value of π‘₯+π‘Ž 2 +𝑏 is 𝑏, which occurs when π‘₯=βˆ’π‘Ž. For the quadratic expression βˆ’ π‘₯ 2 +8π‘₯+3, Determine its maximum value. Determine the value of π‘₯ for which this maximum occurs. ? =βˆ’ π‘₯ 2 βˆ’8π‘₯ +3 =βˆ’ π‘₯βˆ’4 2 βˆ’16 +3 =βˆ’ π‘₯βˆ’ =19βˆ’ π‘₯βˆ’4 2 We are subtracting a number which is at least 0. Therefore to maximise the result, we should subtract 0. Max value: π‘₯ at which this occurs: 4

17 Turning Points of Quadratics
A curve with equation 𝑦= π‘₯ 2 βˆ’8π‘₯+17 has a turning point at 𝑃. Determine the coordinates of 𝑃. 𝑃 At the turning point, the value of 𝑦, i.e. π‘₯ 2 βˆ’8π‘₯+17, is minimised. We know how to do this! ? 𝑦= π‘₯βˆ’4 2 βˆ’ = π‘₯βˆ’ βˆ΄π‘ƒ(4,1) Quickfire Questions Completed Square Turning Point 𝑦= π‘₯ 2 +2π‘₯ = π‘₯ βˆ’1,7 𝑦= π‘₯ 2 βˆ’6π‘₯ = π‘₯βˆ’3 2 βˆ’ ,βˆ’6 𝑦= π‘₯ 2 +10π‘₯ = π‘₯+5 2 βˆ’ βˆ’5,βˆ’21 𝑦=2 π‘₯ 2 +8π‘₯ =2 π‘₯+2 2 βˆ’ (βˆ’2,βˆ’7) ? ? ? ? ? ? ? ?

18 Test Your Understanding
? π’š= 𝒙+πŸ“ 𝟐 βˆ’πŸ• βˆ’πŸ“,βˆ’πŸ• = π’™βˆ’π’Ž 𝟐 βˆ’ π’Ž 𝟐 Minimum value: βˆ’ π’Ž 𝟐 (which occurs when 𝒙=π’Ž) ?

19 Exercise 3 Find the turning point of the curves with the following equations: 𝑦= π‘₯ 2 +6π‘₯ βˆ’πŸ‘,βˆ’πŸ– 𝑦= π‘₯ 2 βˆ’4π‘₯ 𝟐,πŸ— 𝑦= π‘₯ 2 +10π‘₯ βˆ’πŸ“,πŸ” 𝑦= π‘₯ 2 βˆ’12π‘₯ πŸ”,βˆ’πŸ” 𝑦=3 π‘₯ 2 +12π‘₯ βˆ’πŸ,βˆ’πŸπŸ 𝑦=2 π‘₯ 2 βˆ’12π‘₯ πŸ‘,πŸ‘ 𝑦=8βˆ’4π‘₯βˆ’ π‘₯ βˆ’πŸ,𝟏𝟐 𝑦=1βˆ’8π‘₯βˆ’2 π‘₯ βˆ’πŸ,πŸ— Find the minimum value of the following expressions: π‘₯ 2 +2π‘₯ 𝟏 π‘₯ 2 +10π‘₯ βˆ’πŸπŸ π‘₯ 2 βˆ’4π‘₯ πŸ‘ π‘₯ 2 +π‘₯ πŸ• πŸ’ π‘₯ 2 +π‘Žπ‘₯ βˆ’ 𝒂 𝟐 1 3 [Edexcel GCSE(9-1) Mock Set 1 Autumn H Q15] Here is a sketch of a vertical cross section through the centre of a bowl. The cross section is the shaded region between the curve and the π‘₯ -axis. The curve has equation 𝑦= π‘₯ βˆ’3π‘₯Β  where π‘₯Β  and 𝑦 are both measured in centimetres. Find the depth of the bowl. π’š= 𝟏 𝟏𝟎 𝒙 𝟐 βˆ’πŸ‘πŸŽπ’™ = 𝟏 𝟏𝟎 π’™βˆ’πŸπŸ“ 𝟐 βˆ’πŸπŸπŸ“ = 𝟏 𝟏𝟎 π’™βˆ’πŸπŸ“ 𝟐 βˆ’πŸπŸ.πŸ“ Minimum point is πŸπŸ“,βˆ’πŸπŸ.πŸ“ Therefore depth is 22.5 cm ? a ? b c ? ? d ? e ? f ? g ? h 2 a ? ? b ? c ? ? d e ?

20 Spot the Student Error ? ? ? β€œComplete the square using π‘₯ 2 +4π‘₯βˆ’12.”
Student Answer: β€œ(π‘₯+6)(π‘₯βˆ’2)” What’s wrong: The student factorised rather than completed the square. We factorise when we want to find the roots of a quadratic. Meanwhile, we complete the square when we want to find the turning point of a quadratic. ? π‘₯ 2 βˆ’6π‘₯ β†’ π‘₯βˆ’ =… What’s wrong: The 9 should have been subtracted (and it should always be a subtraction regardless of whether the coefficient of π‘₯ is positive or negative. ? β€œWrite 2 π‘₯ 2 +8π‘₯+11” in the form π‘Ž π‘₯+𝑏 2 +𝑐” Student Answer: =2 π‘₯ 2 +4π‘₯ +11 =2 π‘₯+2 2 βˆ’4 +11 =2 π‘₯ What’s wrong: In the last line of working, they did βˆ’4+11 β†’ +7 They forgot to multiply the βˆ’4 by 2. ?

21 Proof of the Quadratic Formula
By completing the square, show that the solution of π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0 is π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž ? π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0 π‘₯ 2 + 𝑏 π‘Ž π‘₯+ 𝑐 π‘Ž =0 π‘₯+ 𝑏 2π‘Ž 2 βˆ’ 𝑏 2 4 π‘Ž 2 + 𝑐 π‘Ž =0 π‘₯+ 𝑏 2π‘Ž 2 = 𝑏 2 4 π‘Ž 2 βˆ’ 𝑐 π‘Ž = 𝑏 2 βˆ’4π‘Žπ‘ 4 π‘Ž 2 π‘₯+ 𝑏 2π‘Ž =Β± 𝑏 2 βˆ’4π‘Žπ‘ 4 π‘Ž 2 =Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž π‘₯=βˆ’ 𝑏 2π‘Ž Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž = βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž


Download ppt "GCSE Completing The Square"

Similar presentations


Ads by Google