Download presentation
Presentation is loading. Please wait.
Published byDarren Williamson Modified over 6 years ago
1
Symmetry “the correspondence in size, form and
arrangement of the parts of a recurring array (for example, patterned wallpaper) with respect to a point, line or plane” Zoltai & Stout, 1984
2
is controlled by the symmetry of its atomic structure.
Internal symmetry not only determines the morphology of a crystal, it also determines: The physical properties and behaviour of a mineral are determined by its atomic structure and bonding, which is controlled by the symmetry of its atomic structure. Symmetry also forms a fundamental part of how we classify minerals (the language of mineralogy).
3
Morphology
4
Morphology, the internal arrangement of atoms and the internal symmetry
6
Symmetry Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern Operation: some act that reproduces the motif to create the pattern Element: an operation located at a particular point in space
7
6 6 2-D + 3D Symmetry Symmetry Elements 1. Rotation Operation
a. Two-fold rotation = 360o/2 rotation to reproduce a motif in a symmetrical pattern = the symbol for a two-fold rotation Operation 6 Motif Element 6
8
6 6 2-D + 3D Symmetry Symmetry Elements 1. Rotation
a. Two-fold rotation = 360o/2 rotation to reproduce a motif in a symmetrical pattern = the symbol for a two-fold rotation 6 first operation step second operation step 6
9
6 6 6 2-D + 3D Symmetry Symmetry Elements 1. Rotation
b. Three-fold rotation = 360o/3 rotation to reproduce a motif in a symmetrical pattern 6 6 6
10
6 6 6 2-D + 3D Symmetry Symmetry Elements 1. Rotation
b. Three-fold rotation = 360o/3 rotation to reproduce a motif in a symmetrical pattern 6 step 1 6 step 3 6 step 2
11
Symmetry Elements 1. Rotation
2-D + 3D Symmetry Symmetry Elements 1. Rotation 6 6 6 6 6 1-fold 2-fold 3-fold 4-fold 6-fold 5-fold and greater than 6-fold rotations will not work in combination with translations in crystals
12
2D + 3D Symmetry Symmetry Element 2. Inversion Inversion (i) – symmetry with respect to a point, called an inversion centre 1 1
13
2-D + 3D Symmetry Symmetry Elements 3. Reflection (m) m m
Reflection across a “mirror plane” reproduces a motif = symbol for a mirror plane m m
14
2-D + 3D Symmetry We now have 6 unique symmetry operations:
Rotations are congruent operations: reproductions are identical Inversion and reflection are enantiomorphic operations: reproductions are mirror images
15
Congruent operations are also called proper operations, or in more elegant terms, operations of the first sort Incongruent operations are also called improper operations, or in more elegant terms, operations of the second sort
16
2-D + 3D Symmetry Combinations of symmetry elements are also possible
To create a complete analysis of symmetry about a point in space, we must try all possible combinations of these symmetry elements
17
Try combining a 2-fold rotation axis with a mirror
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
18
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
Step 1: reflect (could do either step first)
19
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
Step 1: reflect Step 2: rotate (everything)
20
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
Step 1: reflect Step 2: rotate (everything) Is that all??
21
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
Step 1: reflect Step 2: rotate (everything) No! A second mirror is required
22
2-D + 3D Symmetry Try combining a 2-fold rotation axis with a mirror
The result is Point Group 2mm “2mm” indicates 2 mirrors The mirrors are different (not equivalent by symmetry)
23
Now try combining a 4-fold rotation axis with a mirror
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror
24
Now try combining a 4-fold rotation axis with a mirror Step 1: reflect
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Step 1: reflect
25
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Step 1: reflect Step 2: rotate 2
26
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Step 1: reflect Step 2: rotate 3
27
Now try combining a 4-fold rotation axis with a mirror
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Any other elements? Yes, two more mirrors
28
Now try combining a 4-fold rotation axis with a mirror
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Any other elements? Yes, two more mirrors Point group name??
29
Now try combining a 4-fold rotation axis with a mirror
2-D + 3D Symmetry Now try combining a 4-fold rotation axis with a mirror Any other elements? Yes, two more mirrors Point group name?? 4mm
30
3-fold rotation axis with a mirror creates point group 3m
2-D + 3D Symmetry 3-fold rotation axis with a mirror creates point group 3m
31
6-fold rotation axis with a mirror creates point group 6mm
2-D + 3D Symmetry 6-fold rotation axis with a mirror creates point group 6mm
32
2-D + 3D Symmetry All other combinations are either: Incompatible
(2 + 2 cannot be done in 2-D) Redundant with others already tried m + m 2mm because creates 2-fold This is the same as 2 + m 2mm
33
2-D Symmetry The original 6 elements plus the 4 combinations creates 10 possible 2-D planar point Groups (which also occur in 3-D): m 2mm 3m 4mm 6mm Any 2-D pattern of objects surrounding a point must conform to one of these groups
34
New 3-D Symmetry Elements Rotoinversion (a) 1-fold rotoinversion 1
35
3-D Symmetry New 3-D Symmetry Elements 4. Rotoinversion _
a. 1-fold rotoinversion ( 1 ) Step 1: rotate 360/1 (identity)
36
3-D Symmetry New 3-D Symmetry Elements 4. Rotoinversion _
a. 1-fold rotoinversion ( 1 ) Step 1: rotate 360/1 (identity) Step 2: invert
37
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
b. 2-fold rotoinversion ( 2 ) Step 1: rotate 360/2
38
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
b. 2-fold rotoinversion ( 2 ) Step 1: rotate 360/2 Step 2: invert
39
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
b. 2-fold rotoinversion ( 2 ) The result:
40
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
b. 2-fold rotoinversion ( 2 ) This is the same as m, so not a new operation
41
New Symmetry Elements 4. Rotoinversion _ c. 3-fold rotoinversion ( 3 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ c. 3-fold rotoinversion ( 3 )
42
3-D Symmetry New Symmetry Elements 4. Rotoinversion 1 _
c. 3-fold rotoinversion ( 3 ) Step 1: rotate 360o/3 1
43
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
c. 3-fold rotoinversion ( 3 ) Step 2: invert through center
44
3-D Symmetry New Symmetry Elements 4. Rotoinversion 1 2 _
c. 3-fold rotoinversion ( 3 ) Completion of the first sequence 1 2
45
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
c. 3-fold rotoinversion ( 3 ) Rotate another 360/3
46
3-D Symmetry New Symmetry Elements 4. Rotoinversion 3 1 2
_ c. 3-fold rotoinversion ( 3 ) Complete second step to create face 3 3 1 2
47
3-D Symmetry New Symmetry Elements 4. Rotoinversion 3 1 4 2
c. 3-fold rotoinversion ( 3 ) Third step creates face 4 (3 (1) 4) 3 1 4 2
48
3-D Symmetry New Symmetry Elements 4. Rotoinversion 1 5 2
c. 3-fold rotoinversion ( 3 ) Fourth step creates face 5 (4 (2) 5) 5 1 2
49
3-D Symmetry New Symmetry Elements 4. Rotoinversion 5 1 6
c. 3-fold rotoinversion ( 3 ) Fifth step creates face 6 (5 (3) 6) Sixth step returns to face 1 5 1 6
50
3-D Symmetry New Symmetry Elements 4. Rotoinversion This is unique 3 5
c. 3-fold rotoinversion ( 3 ) This is unique 3 5 1 4 2 6
51
New Symmetry Elements 4. Rotoinversion _ d. 4-fold rotoinversion ( 4 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ d. 4-fold rotoinversion ( 4 )
52
New Symmetry Elements 4. Rotoinversion _ d. 4-fold rotoinversion ( 4 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ d. 4-fold rotoinversion ( 4 )
53
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4
54
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4 2: Invert
55
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4 2: Invert
56
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4
57
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4 4: Invert
58
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4 4: Invert
59
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) 5: Rotate 360/4
60
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) This is also a unique operation
61
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
d. 4-fold rotoinversion ( 4 ) A more fundamental representative of the pattern
62
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
e. 6-fold rotoinversion ( 6 ) Begin with this framework:
63
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1
64
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1
65
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 2
66
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 2
67
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 2
68
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 2 4
69
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 2 4
70
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 5 2 4
71
New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion _ e. 6-fold rotoinversion ( 6 ) 1 3 5 2 4
72
New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
3-D Symmetry New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 ) 1 3 5 2 6 4
73
3-D Symmetry New Symmetry Elements 4. Rotoinversion _
e. 6-fold rotoinversion ( 6 ) Note: this is the same as a 3-fold rotation axis perpendicular to a mirror plane (combinations of elements follows) Top View
74
3-D Symmetry New Symmetry Elements 4. Rotoinversion A simpler pattern
_ e. 6-fold rotoinversion ( 6 ) A simpler pattern Top View
75
3-D Symmetry We now have 10 unique 3-D symmetry operations:
Combinations of these elements are also possible
76
3-D Symmetry 3-D symmetry element combinations
a. Rotation axis parallel to a mirror Same as 2-D 2 || m = 2mm 3 || m = 3m, also 4mm, 6mm b. Rotation axis mirror 2 m = 2/m 3 m = 3/m, also 4/m, 6/m c. Most other rotations + m generates already existing symmetry operations 4/m = 4/m
77
3-D Symmetry 3-D symmetry element combinations
d. Combinations of rotations 2 + 2 at 90o 222 (third 2 required from combination) 4 + 2 at 90o 422 ( “ “ “ ) 6 + 2 at 90o 622 ( “ “ “ )
78
3-D Symmetry As in 2-D, the number of possible combinations is limited only by incompatibility and redundancy There are only 22 possible unique 3-D combinations, when combined with the 10 original 3-D elements yields the 32 3-D Point Groups
79
Note that the 32 point groups, also called crystal classes are derived from only 13 operations:
Congruent operations 1, 2, 3, 4, 6 Incongruent operations _ _ _ _ _ 1 = i, 2 = m, 3, 4, 6 = 3/m, 2/m, 4/m, 6/m
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.