Download presentation
Presentation is loading. Please wait.
1
MPI: Message Passing Interface
Prabhaker Mateti Wright State University
2
Overview MPI Hello World! Introduction to programming with MPI
MPI library calls Mateti, MPI
3
MPI Overview Similar to PVM Network of Heterogeneous Machines
Multiple implementations Open source: MPICH LAM Vendor specific Mateti, MPI
4
MPI Features Rigorously specified standard Portable source code
Enables third party libraries Derived data types to minimize overhead Process topologies for efficiency on MPP Can fully overlap communication Extensive group communication Mateti, MPI
5
MPI 2 Dynamic Process Management One-Sided Communication
Extended Collective Operations External Interfaces Parallel I/O Language Bindings (C++ and Fortran-90) Mateti, MPI
6
MPI Overview 125+ functions typical applications need only about 6
Mateti, MPI
7
MPI: manager+workers MPI_Init initializes the MPI system
#include <mpi.h> main(int argc, char *argv[]) { int myrank; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &myrank); if (myrank == 0) manager(); else worker(); MPI_Finalize(); } MPI_Init initializes the MPI system MPI_Finalize called last by all processes MPI_Comm_rank identifies a process by its rank MPI_COMM_WORLD is the group that this process belongs to Mateti, MPI
8
MPI: manager() MPI_Comm_size MPI_Send manager() { MPI_Status status;
MPI_COMM_WORLD, &ntasks); for (i = 1;i < ntasks;++i){ work= nextWork(); MPI_Send(&work, 1, MPI_INT,i,WORKTAG, MPI_COMM_WORLD); } … MPI_Reduce(&sub, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); MPI_Comm_size MPI_Send Mateti, MPI
9
MPI: worker() MPI_Recv worker() { MPI_Status status; for (;;) {
MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); result = doWork(); MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD); } MPI_Recv Mateti, MPI
10
MPI computes Mateti, MPI #include "mpi.h"
int main(int argc, char *argv[]) { MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD,&np); MPI_Comm_rank(MPI_COMM_WORLD,&myid); n = ...; /* intervals */ MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); sub = series_sum(n, np); MPI_Reduce(&sub, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (myid == 0) printf("pi is %.16f\n", pi); MPI_Finalize(); return 0; } Mateti, MPI
11
Process groups Group membership is static.
There are no race conditions caused by processes independently entering and leaving a group. New group formation is collective and group membership information is distributed, not centralized. Mateti, MPI
12
MPI_Send blocking send
&sendbuffer, /* message buffer */ n, /* n items of */ MPI_type, /* data type in message */ destination, /* process rank */ WORKTAG, /* user chosen tag */ MPI_COMM /* group */ ); Mateti, MPI
13
MPI_Recv blocking receive
&recvbuffer, /* message buffer */ n, /* n data items */ MPI_type, /* of type */ MPI_ANY_SOURCE, /* from any sender */ MPI_ANY_TAG, /* any type of message */ MPI_COMM, /* group */ &status ); Mateti, MPI
14
Send-receive succeeds …
Sender’s destination is a valid process rank Receiver specified a valid source process Communicator is the same for both Tags match Message data types match Receiver’s buffer is large enough Mateti, MPI
15
Message Order P sends messages m1 first then m2 to Q
Q will receive m1 before m2 P sends m1 to Q, then m2 to R In terms of a global wall clock, conclude nothing re R receiving m2 before/after Q receiving m1. Mateti, MPI
16
Blocking and Non-blocking
Send, receive can be blocking or not A blocking send can be coupled with a non-blocking receive, and vice-versa Non-blocking send can use Standard mode MPI_Isend Synchronous mode MPI_Issend Buffered mode MPI_Ibsend Ready mode MPI_Irsend Mateti, MPI
17
MPI_Isend non-blocking
&buffer, /* message buffer */ n, /* n items of */ MPI_type, /* data type in message */ destination, /* process rank */ WORKTAG, /* user chosen tag */ MPI_COMM, /* group */ &handle ); Mateti, MPI
18
MPI_Irecv MPI_Irecv( &result, /* message buffer */
n, /* n data items */ MPI_type, /* of type */ MPI_ANY_SOURCE, /* from any sender */ MPI_ANY_TAG, /* any type of message */ MPI_COMM_WORLD, /* group */ &handle ); Mateti, MPI
19
MPI_Wait MPI_Wait( handle, &status ); Mateti, MPI
20
MPI_Wait, MPI_Test MPI_Wait( handle, &status ); MPI_Test( handle,
Mateti, MPI
21
Collective Communication
Mateti, MPI
22
MPI_Bcast MPI_Bcast( buffer, count, MPI_Datatype, root, MPI_Comm );
All processes use the same count, data type, root, and communicator. Before the operation, the root’s buffer contains a message. After the operation, all buffers contain the message from the root Mateti, MPI
23
MPI_Scatter MPI_Scatter( sendbuffer, sendcount, MPI_Datatype,
recvbuffer, recvcount, MPI_Datatype, root, MPI_Comm); All processes use the same send and receive counts, data types, root and communicator. Before the operation, the root’s send buffer contains a message of length sendcount * N', where N is the number of processes. After the operation, the message is divided equally and dispersed to all processes (including the root) following rank order. Mateti, MPI
24
MPI_Gather MPI_Gather( sendbuffer,
sendcount, MPI_Datatype, recvbuffer, recvcount, MPI_Datatype, root, MPI_Comm); This is the “reverse” of MPI_Scatter(). After the operation the root process has in its receive buffer the concatenation of the send buffers of all processes (including its own), with a total message length of recvcount * N, where N is the number of processes. The message is gathered following rank order. Mateti, MPI
25
MPI_Reduce MPI_Reduce( sndbuf, rcvbuf,
count, MPI_Datatype datatype, MPI_Op, root, MPI_Comm); After the operation, the root process has in its receive buffer the result of the pair-wise reduction of the send buffers of all processes, including its own. Mateti, MPI
26
Predefined Reduction Ops
MPI_MAX MPI_MIN MPI_SUM MPI_PROD MPI_LAND MPI_BAND MPI_LOR MPI_BOR MPI_LXOR MPI_BXOR MPI_MAXLOC MPI_MINLOC L logical B bit-wise Mateti, MPI
27
User Defined Reduction Ops
void myOperator ( void * invector, void * inoutvector, int * length, MPI_Datatype * datatype) { … } Mateti, MPI
28
Ten Reasons to Prefer MPI over PVM
MPI has more than one free, and quality implementations. MPI can efficiently program MPP and clusters. MPI is rigorously specified. MPI efficiently manages message buffers. MPI has full asynchronous communication. MPI groups are solid, efficient, and deterministic. MPI defines a 3rd party profiling mechanism. MPI synchronization protects 3rd party software. MPI is portable. MPI is a standard. Mateti, MPI
29
Summary Introduction to MPI Reinforced Manager-Workers paradigm
Send, receive: blocked, non-blocked Process groups Mateti, MPI
30
MPI resources Open source implementations Books On-line tutorials
MPICH LAM Books Using MPI William Gropp, Ewing Lusk, Anthony Skjellum Using MPI-2 William Gropp, Ewing Lusk, Rajeev Thakur On-line tutorials Mateti, MPI
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.