Presentation is loading. Please wait.

Presentation is loading. Please wait.

ASV Chapters 1 - Sample Spaces and Probabilities

Similar presentations


Presentation on theme: "ASV Chapters 1 - Sample Spaces and Probabilities"— Presentation transcript:

1 ASV Chapters 1 - Sample Spaces and Probabilities
2 - Conditional Probability and Independence 3 - Random Variables 4 - Approximations of the Binomial Distribution 5 - Transforms and Transformations 6 - Joint Distribution of Random Variables 7 - Sums and Symmetry 8 - Expectation and Variance in the Multivariate Setting 9 - Tail Bounds and Limit Theorems 10 - Conditional Distribution 11 - Appendix A, B, C, D, E, F

2 Discrete and Continuous
Recall that events can be described by random variables (from which their corresponding probabilities can be calculated). Also recall that there are two types of numerical (versus categorical) random variable: Discrete and Continuous

3 Discrete and Continuous
Recall that events can be described by random variables (from which their corresponding probabilities can be calculated). Also recall that there are two types of numerical (versus categorical) random variable: Discrete and Continuous

4 Random Variable X = “Value shown”
Example: Roll a fair die once. Sample space {1,2,3,4,5,6} Random Variable X = “Value shown” Discrete

5 “probability mass function” Probability Histogram
Example: Roll a fair die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” X is uniformly distributed over 1, 2, 3, 4, 5, 6. “probability mass function” pmf Probability Histogram X P(X = x) x p(x) 1 1/6 2 3 4 5 6 Total Area = 1 “What is the probability of rolling a 4?”

6 “probability mass function” Probability Histogram
Example: Roll a fair die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” X is uniformly distributed over 1, 2, 3, 4, 5, 6. “probability mass function” pmf Probability Histogram X P(X = x) x p(x) 1 1/6 2 3 4 5 6 Total Area = 1 “What is the probability of rolling a 4?”

7 “probability mass function” “Cumulative distribution function”
Example: Roll a fair die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” “probability mass function” “Cumulative distribution function” pmf cdf P(X = x) x p(x) 1 1/6 2 3 4 5 6 P(X  x) F(x) 1/6 2/6 3/6 4/6 5/6 1

8 pmf cdf Discrete Random Variable X = “Value shown” P(X = x) x p(x) 1
Example: Roll a fair die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” “probability mass function” “Cumulative distribution function” pmf cdf P(X = x) x p(x) 1 1/6 2 3 4 5 6 P(X  x) “jump discontinuities” “piecewise constant” F(x) 1/6 2/6 3/6 4/6 5/6 1 “staircase graph” from 0 to 1

9 Random Variable X = “Value shown”
Example: Roll a biased die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” 0.20 0.30 0.15 0.10 0.05 pmf P(X = x) x p (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05

10 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” 0.14 0.16 0.20 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

11 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y p (y) 2 3 4 5 6 7 8 9 10 11 12 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

12 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 3 4 5 6 7 8 9 10 11 12 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

13 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) 3 (1,2), (2,1) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

14 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) 3 (1,2), (2,1) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

15 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

16 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

17 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

18 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) (0.20)(0.16) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

19 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) (0.20)(0.16) (0.30)(0.14) 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

20 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) via disjoint (0.20)(0.16) + (0.30)(0.14) = 0.074 4 (1,3), (2,2), (3,1) 5 . 6 7 8 9 10 11 (5,6), (6,5) 12 (6,6) 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

21 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” P(Y = y) y Outcomes p (y) 2 (1,1) via independence (0.20)(0.14) = 0.028 3 (1,2), (2,1) via disjoint (0.20)(0.16) + (0.30)(0.14) = 0.074 4 (1,3), (2,2), (3,1) 0.116 5 . 0.153 6 0.170 7 0.169 8 0.132 9 0.082 10 0.047 11 (5,6), (6,5) 0.022 12 (6,6) 0.007 1 pmf pmf P(X1 = x) x p1 (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X2 = x) p2 (x) 0.14 0.16 0.20 1

22 Probability Histogram
POPULATION Pop vals x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) Total 1 Example: X = Cholesterol level (mg/dL) random variable X Discrete Probability Histogram “Density” X p(x) = Probability that the random variable X is equal to a specific value x, i.e., p(x) = P(X = x) “probability mass function” (pmf) | x

23 Probability Histogram
POPULATION Pop vals x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) Total 1 Pop vals x pmf p(x) cdf F(x) = P(X  x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) Total 1 increases from 0 to 1 in a “staircase graph” Example: X = Cholesterol level (mg/dL) random variable X Discrete Probability Histogram X F(x) = Probability that the random variable X is less than or equal to a specific value x, i.e., F(x) = P(X  x) “cumulative distribution function” (cdf) | x

24 x1 p(x1) x2 p(x2) x3 p(x3) F(b) = P(X  b) F(a–) = P(X  a–)
POPULATION Pop vals x pmf p(x) cdf F(x) = P(X  x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) Total 1 increases from 0 to 1 in a “staircase graph” Example: X = Cholesterol level (mg/dL) random variable X Discrete Calculating “interval probabilities”… X F(b) = P(X  b) F(a–) = P(X  a–) F(b) – F(a–) = P(X  b) – P(X  a–) = P(a  X  b) p(x) | a– | a | b

25 FUNDAMENTAL THEOREM OF CALCULUS
POPULATION Pop vals x pmf p(x) cdf F(x) = P(X  x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) Total 1 increases from 0 to 1 in a “staircase graph” Example: X = Cholesterol level (mg/dL) random variable X Discrete Calculating “interval probabilities”… X F(b) = P(X  b) F(a–) = P(X  a–) F(b) – F(a–) = P(X  b) – P(X  a–) FUNDAMENTAL THEOREM OF CALCULUS (discrete form) = P(a  X  b) p(x) | a– | a | b

26 Random Variable X = “Value shown”
Example: Roll a biased die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” Method 1 pmf P(X = x) x p (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 0.20 0.30 0.15 0.10 0.05

27 Random Variable X = “Value shown”
Example: Roll a biased die once. Sample space {1,2,3,4,5,6} Discrete Random Variable X = “Value shown” Method 2 pmf cdf P(X = x) x p (x) 1 0.20 2 0.30 3 4 0.15 5 0.10 6 0.05 P(X  x) F(x) 0.20 0.50 0.70 0.85 0.95 1 0.20 0.30 0.15 0.10 0.05

28 x1 p(x1) x2 p(x2) x3 p(x3) POPULATION x p(x) ⋮ Total 1 “balance point”
Pop vals x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) Total 1 Example: X = Cholesterol level (mg/dL) random variable X Discrete “balance point” Two issues… “Measure of Spread” How to define a “typical” distance of a random population value from this mean “Measure of Center” How to define a “typical” population value Mean (of X): Variance (of X): = “expected value” or “expectation” of X Moreover, we will prove that… Standard deviation (of X):

29 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” 0.14 0.16 0.20 pmf pmf x p1 (x) p2 (x) 1 0.20 0.14 2 0.30 0.16 3 4 0.15 5 0.10 6 0.05

30 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” 0.20 0.30 0.15 0.10 0.05 pmf pmf x p1 (x) p2 (x) 1 0.20 0.14 2 0.30 0.16 3 4 0.15 5 0.10 6 0.05

31 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” 0.20 0.30 0.15 0.10 0.05 pmf pmf x p1 (x) p2 (x) 1 0.20 0.14 2 0.30 0.16 3 4 0.15 5 0.10 6 0.05

32 Random Variable Y = “Sum”
Example: Roll two dice, independently. Sample space {(1,1),…,(6,6)} Discrete Random Variable Y = “Sum” 0.20 0.30 0.15 0.10 0.05 pmf pmf x p1 (x) p2 (x) 1 0.20 0.14 2 0.30 0.16 3 4 0.15 5 0.10 6 0.05

33 To summarize…

34 Probability Histogram
Probability Table Probability Histogram X Total Area = 1 POPULATION Pop xi Probabilities pmf p(xi ) x1 p(x1) x2 p(x2) x3 p(x3) 1 Discrete random variable X Frequency Table Density Histogram X Total Area = 1 Data xi Relative Frequencies p(xi ) = fi /n x1 p(x1) x2 p(x2) x3 p(x3) xk p(xk) 1 SAMPLE of size n x1 x2 x3 x4 x5 x6 …etc…. xn

35 Probability Histogram
Probability Table Probability Histogram X Total Area = 1 POPULATION Pop xi Probabilities pmf p(xi ) x1 p(x1) x2 p(x2) x3 p(x3) 1 ? Discrete random variable X Continuous Frequency Table Density Histogram X Total Area = 1 Data xi Relative Frequencies p(xi ) = fi /n x1 p(x1) x2 p(x2) x3 p(x3) xk p(xk) 1 SAMPLE of size n x1 x2 x3 x4 x5 x6 …etc…. xn


Download ppt "ASV Chapters 1 - Sample Spaces and Probabilities"

Similar presentations


Ads by Google