Presentation is loading. Please wait.

Presentation is loading. Please wait.

7.4 – Integration of Rational Functions by Partial Fractions

Similar presentations


Presentation on theme: "7.4 – Integration of Rational Functions by Partial Fractions"β€” Presentation transcript:

1 7.4 – Integration of Rational Functions by Partial Fractions
Math 181 7.4 – Integration of Rational Functions by Partial Fractions

2 Let’s look at a technique to break rational functions up into the sum of simpler rational functions. For example: 5π‘₯βˆ’3 π‘₯ 2 βˆ’2π‘₯βˆ’3 = 5π‘₯βˆ’3 π‘₯+1 π‘₯βˆ’3 = 2 π‘₯ π‘₯βˆ’3 This technique is called the method of partial fractions.

3 Ex 1. Expand the quotient by partial fractions. π‘₯ 2 +4π‘₯+1 π‘₯βˆ’1 π‘₯+1 π‘₯+3

4 Ex 2. Evaluate the following integral. π‘₯ 2 +4π‘₯+1 π‘₯βˆ’1 π‘₯+1 π‘₯+3 𝑑π‘₯

5 In general, we need to factor the denominator first
In general, we need to factor the denominator first. What happens if we don’t get linear factors? If we get a repeated linear factor π’™βˆ’π’“ π’Ž , then we’ll have corresponding partial fractions: 𝑨 𝟏 π’™βˆ’π’“ + 𝑨 𝟐 π’™βˆ’π’“ 𝟐 +…+ 𝑨 π’Ž π’™βˆ’π’“ π’Ž If we get an irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒, then we’ll have a corresponding partial fraction: 𝑨𝒙+𝑩 𝒙 𝟐 +𝒑𝒙+𝒒 If we get a repeated irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏 , then we’ll have corresponding partial fractions: 𝑩 𝟏 𝒙+ π‘ͺ 𝟏 𝒙 𝟐 +𝒑𝒙+𝒒 + 𝑩 𝟐 𝒙+ π‘ͺ 𝟐 𝒙 𝟐 +𝒑𝒙+𝒒 𝟐 +…+ 𝑩 𝒏 𝒙+ π‘ͺ 𝒏 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏

6 In general, we need to factor the denominator first
In general, we need to factor the denominator first. What happens if we don’t get linear factors? If we get a repeated linear factor π’™βˆ’π’“ π’Ž , then we’ll have corresponding partial fractions: 𝑨 𝟏 π’™βˆ’π’“ + 𝑨 𝟐 π’™βˆ’π’“ 𝟐 +…+ 𝑨 π’Ž π’™βˆ’π’“ π’Ž If we get an irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒, then we’ll have a corresponding partial fraction: 𝑨𝒙+𝑩 𝒙 𝟐 +𝒑𝒙+𝒒 If we get a repeated irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏 , then we’ll have corresponding partial fractions: 𝑩 𝟏 𝒙+ π‘ͺ 𝟏 𝒙 𝟐 +𝒑𝒙+𝒒 + 𝑩 𝟐 𝒙+ π‘ͺ 𝟐 𝒙 𝟐 +𝒑𝒙+𝒒 𝟐 +…+ 𝑩 𝒏 𝒙+ π‘ͺ 𝒏 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏

7 In general, we need to factor the denominator first
In general, we need to factor the denominator first. What happens if we don’t get linear factors? If we get a repeated linear factor π’™βˆ’π’“ π’Ž , then we’ll have corresponding partial fractions: 𝑨 𝟏 π’™βˆ’π’“ + 𝑨 𝟐 π’™βˆ’π’“ 𝟐 +…+ 𝑨 π’Ž π’™βˆ’π’“ π’Ž If we get an irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒, then we’ll have a corresponding partial fraction: 𝑨𝒙+𝑩 𝒙 𝟐 +𝒑𝒙+𝒒 If we get a repeated irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏 , then we’ll have corresponding partial fractions: 𝑩 𝟏 𝒙+ π‘ͺ 𝟏 𝒙 𝟐 +𝒑𝒙+𝒒 + 𝑩 𝟐 𝒙+ π‘ͺ 𝟐 𝒙 𝟐 +𝒑𝒙+𝒒 𝟐 +…+ 𝑩 𝒏 𝒙+ π‘ͺ 𝒏 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏

8 In general, we need to factor the denominator first
In general, we need to factor the denominator first. What happens if we don’t get linear factors? If we get a repeated linear factor π’™βˆ’π’“ π’Ž , then we’ll have corresponding partial fractions: 𝑨 𝟏 π’™βˆ’π’“ + 𝑨 𝟐 π’™βˆ’π’“ 𝟐 +…+ 𝑨 π’Ž π’™βˆ’π’“ π’Ž If we get an irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒, then we’ll have a corresponding partial fraction: 𝑨𝒙+𝑩 𝒙 𝟐 +𝒑𝒙+𝒒 If we get a repeated irreducible quadratic factor 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏 , then we’ll have corresponding partial fractions: 𝑩 𝟏 𝒙+ π‘ͺ 𝟏 𝒙 𝟐 +𝒑𝒙+𝒒 + 𝑩 𝟐 𝒙+ π‘ͺ 𝟐 𝒙 𝟐 +𝒑𝒙+𝒒 𝟐 +…+ 𝑩 𝒏 𝒙+ π‘ͺ 𝒏 𝒙 𝟐 +𝒑𝒙+𝒒 𝒏

9 Ex π‘₯+7 π‘₯ 𝑑π‘₯

10 Note: If degree of top polynomial is ____ degree of bottom polynomial, then ______ first. Ex 4. 2 π‘₯ 3 βˆ’4 π‘₯ 2 βˆ’π‘₯βˆ’3 π‘₯ 2 βˆ’2π‘₯βˆ’3 𝑑π‘₯

11 Note: If degree of top polynomial is ____ degree of bottom polynomial, then ______ first. Ex 4. 2 π‘₯ 3 βˆ’4 π‘₯ 2 βˆ’π‘₯βˆ’3 π‘₯ 2 βˆ’2π‘₯βˆ’3 𝑑π‘₯ β‰₯

12 Note: If degree of top polynomial is ____ degree of bottom polynomial, then ______ first. Ex 4. 2 π‘₯ 3 βˆ’4 π‘₯ 2 βˆ’π‘₯βˆ’3 π‘₯ 2 βˆ’2π‘₯βˆ’3 𝑑π‘₯ β‰₯ divide

13 Note: If degree of top polynomial is ____ degree of bottom polynomial, then ______ first. Ex 4. 2 π‘₯ 3 βˆ’4 π‘₯ 2 βˆ’π‘₯βˆ’3 π‘₯ 2 βˆ’2π‘₯βˆ’3 𝑑π‘₯ β‰₯ divide

14 Ex βˆ’2π‘₯+4 π‘₯ π‘₯βˆ’1 2 𝑑π‘₯


Download ppt "7.4 – Integration of Rational Functions by Partial Fractions"

Similar presentations


Ads by Google