Presentation is loading. Please wait.

Presentation is loading. Please wait.

ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS

Similar presentations


Presentation on theme: "ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS"— Presentation transcript:

1 ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS
Di Zhang, Brian C. Dian and Timothy S. Zwier Zwier Research Group, Purdue University

2 D-Threoninol Follow up Study
II2 (g-g+) C I2 (g+g+) D II2 (g-g-) G I2 (g-g-) E II2 (g+g+) A II3 (g+g-) B I3 (g+g-) (S) (S) HO – CH2 – CH – CH – OH CH3 NH2 (S)

3 Amino Alcohols 2-amino-1,3-propanediol D-allo-threoninol
1,3-diamino-2-propanol propane-1,2,3-triamine

4 Calculational Methods
49 101 Force field calculation in Amber* force field was performed first at low computational cost with MacroModel commercial program suite. 101/49/40/21 stable conformation structures were filtered out with a given energy threshold (50kJ mol-1). Full geometry optimizations were performed using MP2 with G(d,p) basis set (good for accurate structures) and M052X with 6-31+G(d) basis set. 40 21 Phys.Chem.Chem.Phys., 2009, 11,

5 Pulse Generation Molecular Interaction Detection Instrumentation

6 Rotational spectrum of D-allo-threoninol from 7.5-18.5 GHz
MHZ

7 D-allo-threoninol g+ g- g- g- g- g+ g+ g+ g+ anti
Predicted lower energy conformers and relative energies with respect to the global minimum g+ g- g- g- g- g+ g+ g+ g+ anti α→β→ g α β γ 264 cm-1 141 cm-1 cycle I3 44 cm-1 0 cm-1 g →β→α II3 chain 342 cm-1 454 cm-1 496 cm-1 616 cm-1 490 cm-1 550 cm-1 α→β→ g I2 0 cm-1 206 cm-1 264 cm-1 382 cm-1 484 cm-1 565 cm-1 g →β→α II2 382 cm-1 458 cm-1 g →α→β MP G(d,p) M052X G(d,p) III2

8 Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions
g+ g– g→β→α α→β→g Constants Theor. Exp. A (MHz) 3141 (17) 3154 ( 33) B (MHz) 2200 (20) 2174 ( 33) C (MHz) 1929 (25) 1940 ( 71) χaa (MHz) 1.08 0.410(23) -2.38 -2.215(38) χbb (MHz) 2.54 1.642(26) 1.46 1.358(50) χcc (MHz) -3.63 -2.052(26) 0.92 0.858(50) Fꞌ←Fꞌꞌ=3←2 2←1 Fꞌ←Fꞌꞌ=3←2 2←2 1←1 2←1 1←1 1←0

9 Hyperfine structures with their respective 2 2,0 ← 1 1,0 rotational transitions
g- g- g→β→α Constants Theor. Exp. A (MHz) 3888 (13) B (MHz) 1799 (10) C (MHz) 1497 (16) χaa (MHz) 0.73 0.585(23) χbb (MHz) 2.01 1.868(31) χcc (MHz) -2.74 -2.453(31) Fꞌ←Fꞌꞌ=3←2 2←1 1←1 1←0 2←2

10 2-Amino-1,3 propanediol g- g+ g+ g+ g- g- g- anti
Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- g- anti cycle 146 cm-1 0 cm-1 α β γ α→β→γ I3 0 cm-1 134 cm-1 chain α→β→γ I2 494 cm-1 568 cm-1 297 cm-1 417 cm-1 247 cm-1 339 cm-1 215 cm-1 348 cm-1 443 cm-1 467 cm-1 γ→β→α II2 478 cm-1 559 cm-1 γ→α→β MP G(d,p) M052X G(d) III2

11 1,3-Diamino-2-propanol g- g+ g+ g- g- g- g+ g+ g+ anti anti g+
Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g- g- g- g+ g+ g+ anti anti g+ 0 cm-1 β cycle γ→β→α II3 α γ 115 cm-1 323 cm-1 322 cm-1 423 cm-1 455 cm-1 577 cm-1 465 cm-1 517 cm-1 α→β→γ chain I2 146 cm-1 282 cm-1 γ→β→α II2 408 cm-1 625 cm-1 β→α 484 cm-1 652 cm-1 β→ γ MP G(d,p) M052X G(d)

12 Propane-1,2,3-triamine g- g+ g+ g+ g- g-
Predicted lower energy conformers and relative energies with respect to the global minimum g- g+ g+ g+ g- g- 230 cm-1 80 cm-1 II3 II2 0 cm-1 362 cm-1 265 cm-1 294 cm-1 269 cm-1 β γ→β→α α γ β→α β → γ III2 151 cm-1 184 cm-1 α→β→γ I2 303 cm-1 280 cm-1 394 cm-1 323 cm-1 MP G(d,p) M052X G(d)

13 Calculation methods Population decrease D-allo-Threoninol
Population transfer II3(g+g-) II2(g-g-) I3(g+g-) ΔEMP2+ZPC (cm-1) 44 264 ΔEM052X+ZPC (cm-1) 205 141 381 D-allo-Threoninol Rotation of the free –OH group I3(g-g+) I2(g-g-) II2(g-g-) II2(g+g+) II2(g-g+) ΔEMP2+ZPC (cm-1) 146 215 247 297 ΔEM052X+ZPC (cm-1) 134 348 339 417 2-Amino-1,3 propanediol II3(g-g+) II2(g+g-) I2(g+g-) I2(g-g-) ΔEMP2+ZPC (cm-1) 146 115 322 ΔEM052X+ZPC (cm-1) 282 323 423 1,3-Diamino-2-propanol II2(g+g+) II3(g-g+) III2(g-g+) II2(g-g-) II2(g-g+) ΔEMP2+ZPC (cm-1) 230 151 294 362 ΔEM052X+ZPC (cm-1) 80 184 269 265 Propane-1,2,3-triamine Justin L. Neill, Kevin O. Douglass, Brooks H. Pate and David W. Pratt Phys.Chem.Chem.Phys.,2011,13,

14 D-Threoninol 2-Amino-1,3-propanediol D-allo-Threoninol M052X 6-31+G(d)
0 cm-1 0 cm-1 0 cm-1 72 cm-1 0 cm-1 141 cm-1 134 cm-1 345 cm-1 273 cm-1 134 cm-1 205 cm-1 477 cm-1 348 cm-1 348 cm-1 336 cm-1 499 cm-1 417 cm-1 M052X G(d)

15 Energy level diagram of DTR and D-allo
D-allo-Threoninol Newman projection ΔEMP2+ZPC (cm-1) chain chain cycle cycle D-Threoninol Steric hindrance in D-allo raises energy of the structure

16 Conclusions 2.22 Å 2.31 Å Cycles and chains are close in energy to one another, independent of the number and position of the OH and NH2 groups in the trisubstituted aminoalcohol. Cycle forms three weak H-bonds, Chain forms two strong H-bonds. ③ Presence of NH2 : Better H-bond acceptor Poorer H-bond donor H-bond length Distorted structure 2.52 Å 2.16 Å 2.01 Å 2.34 Å 2.63 Å 2.27 Å 2.43 Å 2.12 Å  ΔEM052X+ZPC (cm−1 ) cycle chain β γ α→β→γ γ→β→α β→α,γ 2-Amino-1,3 propanediol 1,3-Diamino-2-propanol M052X G(d) glycerol α γ→β→α Propane-1,2,3-triamine

17 Acknowledgments Prof. Tim Zwier Prof. Hyuk Kang Zachary Davis
Deepali Mehta Di Zhang Joe Korn Nicole Shimko Patrick Walsh Joseph Gord Daniel Hewett John Hopkins

18 Rotational spectrum of 2-Amino-1,3-propanediol from 7.5-18.5 GHz
MHZ

19 Hyperfine structures with their respective 3 1,3 ← 2 1,2 rotational transitions
g- g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 6083 (14) 5996 ( 7) B (MHz) 2279 ( 31) 2273 ( 11) C (MHz) 1997 ( 49) 1977 ( 9) χaa (MHz) -0.29 -0.313(33) -4.67 -3.937(23) χbb (MHz) 2.64 2.351(47) 2.75 2.289(60) χcc (MHz) -2.36 -2.038(47) 1.91 1.648(60) Fꞌ←Fꞌꞌ=4←3 Fꞌ←Fꞌꞌ=4←3 2←1 3←2 2←2 3←3

20 Hyperfine structures with their respective 2 1,1 ← 1 0,1 rotational transitions
g- g+ 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 4242 (85) 7735 ( 7) B (MHz) 3134 ( 15) 1977 ( 9) C (MHz) 2550 ( 11) 1699 ( 10) χaa (MHz) -2.87 -2.370(20) -3.95 -3.239(9) χbb (MHz) 1.69 1.222(33) 1.79 1.646(41) χcc (MHz) 1.18 1.148(33) 2.16 1.593(41) Fꞌ←Fꞌꞌ=3←2 Fꞌ←Fꞌꞌ=3←2 2←1 1←0 2←2 2←1 2←2

21 Rotational spectrum of 1,3-Diamino-2-propanol from 7.5-18.5 GHz
MHZ

22 Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions
g+ g- 1→2→3 3→2→1 Constants Theor. Exp. A (MHz) 8073 (85) 8062 (20) B (MHz) 1969 (90) 1947 (20) C (MHz) 1710 (58) 1695 (20) N1χaa (MHz) 2.39 2.146(33) -1.93 -1.551(63) N1χbb (MHz) -4.55 -3.787(37) 0.72 0.735(78) N1χcc (MHz) 2.16 1.640(37) 1.21 0.816(78) N3χaa (MHz) 2.92 2.573(48) 2.40 2.093(32) N3χbb (MHz) 2.24 1.799(48) -4.58 -3.739(41) N3χcc (MHz) -5.16 -4.372(48) 2.18 1.646(41) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 1,3←1,2 2,3←2,2 1,3←1,2

23 Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions
g- g+ 3→2→1 Constants Theor. Exp. A (MHz) 4314 (59) B (MHz) 3019 (88) C (MHz) 2488 (10) N1χaa (MHz) -1.99 -1.661(73) N1χbb (MHz) -0.35 -0.354(74) N1χcc (MHz) 2.34 2.015(74) N3χaa (MHz) 2.17 1.799(74) N3χbb (MHz) -0.52 -0.458(88) N3χcc (MHz) -1.65 -1.342(88) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,2←2,1 1,2←1,1 2,2←2,2 1,2←1,2

24 Hyperfine structures with their respective 2 1,2 ← 1 0,1 rotational transitions
g- g- 1→2→3 Constants Theor. Exp. A (MHz) 6132 (17) B (MHz) 2210 (92) C (MHz) 1961 (14) N1χaa (MHz) 2.79 2.161(55) N1χbb (MHz) -3.98 -3.198(55) N1χcc (MHz) 1.19 1.037(55) N3χaa (MHz) -4.95 -4.373(18) N3χbb (MHz) 2.28 2.190(17) N3χcc (MHz) 2.67 2.180(17) F1ꞌ, F2ꞌ ←F1ꞌꞌ, F2ꞌꞌ=2,4←2,3 2,3←2,2

25 Rotational spectrum of propane-1,2,3-triamine from 7.5-18.5 GHz

26 g- g+ 2→1 ; 2→3 3→2→1 Constants Theor. Exp. A (MHz) 7575 7630.837(31)
7393 (85) B (MHz) 1929 (11) 1920 (12) C (MHz) 1686 (14) 1669 ( 72) N1χaa (MHz) 2.31 2.420(65) 2.35 N1χbb (MHz) -4.37 -3.770(15) -4.27 N1χcc (MHz) 2.06 1.350(15) 1.92 N3χaa (MHz) 1.64 1.090(32) -2.39 N3χbb (MHz) 2.59 2.435(45) 1.15 N3χcc (MHz) -4.24 -3.525(45) 1.24 N5χaa (MHz) 2.320(38) -1.42 N5χbb (MHz) -2.940(68) 0.84 N5χcc (MHz) 0.620(68) 0.59

27 g+ g+ g- g- 3→2→1 Constants Theor. Exp. A (MHz) 5805 5769.439(79) 5837
( 41) B (MHz) 2259 (21) 2227 ( 19) C (MHz) 1969 (21) 1930 ( 24) N1χaa (MHz) 2.51 2.572(53) 1.70 2.027(52) N1χbb (MHz) -3.65 -3.640(95) -1.63 -3.194(57) N1χcc (MHz) 1.15 1.068(95) -0.05 1.167(57) N3χaa (MHz) -0.43 0.061(97) -3.68 -3.873(78) N3χbb (MHz) 2.32 1.964(10) 2.41 1.377(21) N3χcc (MHz) -1.88 -2.024(10) 1.27 2.496(21) N5χaa (MHz) 0.62 0.079(11) 2.23 1.967(11) N5χbb (MHz) -2.47 -1.970(12) 1.75 1.778(22) N5χcc (MHz) 1.86 1.891(12) -3.98 -3.745(22)


Download ppt "ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS"

Similar presentations


Ads by Google