Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 6: Applications of Trigonometry

Similar presentations


Presentation on theme: "Unit 6: Applications of Trigonometry"β€” Presentation transcript:

1 Unit 6: Applications of Trigonometry
Part 3: Polar Coordinate System Lesson 4: Polar Coordinates and Equations

2 Key Point 1: Plotting Polar Coordinates
Polar coordinate system – a plane with the following qualities Pole – point O (polar coordinates 0, πœƒ ) Polar axis – a ray from O Polar coordinates π‘Ÿ, πœƒ r is the directed distance from O to P Θ is the directed angle whose initial side is the polar axis and whose terminal side is the ray 𝑂𝑃

3 Example 1: Plotting Points in the Polar Coordinate System
Plot the point 𝑃 2, πœ‹ 3 . Solution: r = 2, ΞΈ = Ο€/3

4 Key Point 2: Finding all Polar Coordinates
Let P have polar coordinates π‘Ÿ, πœƒ . Any other polar coordinate of P must be of the form π‘Ÿ, πœƒ+2π‘›πœ‹ or βˆ’π‘Ÿ, πœƒ+(2𝑛+1)πœ‹ βˆ’π‘Ÿ, πœƒ+(2𝑛+1)πœ‹ , where n is any integer.

5 Example 2: Finding all Polar Coordinates for a Point
If the point P has polar coordinates 3, πœ‹ 3 , find all polar coordinates for P. Solution: From the first formula, 3, πœ‹ 3 = 3, πœ‹ 3 +2π‘›πœ‹ = 3, πœ‹ 3 + 6π‘›πœ‹ 3 3, πœ‹ 3 + 6π‘›πœ‹ 3 = 3, 6π‘›πœ‹+πœ‹ 3 = 3, (6𝑛+1)πœ‹ 3 From the second formula, 3, πœ‹ 3 = βˆ’3, πœ‹ 3 +(2𝑛+1)πœ‹ βˆ’3, πœ‹ 3 +(2𝑛+1)πœ‹ = βˆ’3, πœ‹ 3 + (6𝑛+3)πœ‹ 3 = βˆ’3, (6𝑛+3)πœ‹+πœ‹ 3 = βˆ’3, (6𝑛+4)πœ‹ 3

6 Key Point 3: Coordinate and Equation Conversion
Polar to Rectangular: π‘₯=π‘Ÿ cos πœƒ 𝑦=π‘Ÿ sin πœƒ Rectangular to Polar: π‘Ÿ 2 = π‘₯ 2 + 𝑦 2 tan πœƒ = 𝑦 π‘₯

7 Example 3: Converting from Polar to Rectangular Coordinates
Use an algebraic method to find the rectangular coordinates of the point with polar coordinates 3, 5πœ‹ 6 . Approximate exact solutions with a calculator when appropriate. Solution: π‘₯=π‘Ÿ cos πœƒ =3 cos 5πœ‹ 6 =3 3 2 = 𝑂𝑅 𝑦=π‘Ÿ sin πœƒ =3 sin 5πœ‹ 6 =3 1 2 = 3 2 𝑂𝑅 1.5 Acceptable Answers: , 3 2 , , 1.5 , 2.598, 3 2 , 2.598, 1.5

8 Example 4: Converting from Rectangular to Polar Coordinates
Find two polar coordinate pairs for the point with rectangular coordinates βˆ’1, 1 . Solution: π‘Ÿ 2 = π‘₯ 2 + 𝑦 2 = (βˆ’1) 2 + (1) 2 =1+1=2 π‘Ÿ=Β± 2 tan πœƒ = 𝑦 π‘₯ = 1 βˆ’1 =βˆ’1 π‘–π‘›π‘£π‘’π‘Ÿπ‘ π‘’ π‘œπ‘“ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 tan βˆ’1 tan βˆ’1 =135Β° 𝑂𝑅 3πœ‹ 4

9 Example 5: Converting from a Polar to Rectangular Equation
Convert π‘Ÿ=4 sec πœƒ to rectangular form. Solution: π‘Ÿ=4 sec πœƒ 𝑑𝑖𝑣𝑖𝑑𝑒 π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 sec πœƒ π‘Ÿ sec πœƒ =4 π‘Ÿπ‘’π‘π‘–π‘π‘Ÿπ‘œπ‘π‘Žπ‘™ 𝑖𝑑𝑒𝑛𝑑𝑖𝑑𝑦 π‘Ÿ cos πœƒ =4 π‘₯=π‘Ÿ cos πœƒ π‘₯=4

10 Example 6: Converting from a Rectangular to Polar Equation
Convert (π‘₯βˆ’3) 2 + (π‘¦βˆ’2) 2 =13 to polar form. Solution: (π‘₯βˆ’3) 2 + (π‘¦βˆ’2) 2 =13 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘π‘Žπ‘Ÿπ‘’π‘›π‘‘β„Žπ‘’π‘ π‘’π‘  π‘₯ 2 βˆ’6π‘₯+9+ 𝑦 2 βˆ’4𝑦+4 =13 π‘π‘œπ‘šπ‘π‘–π‘›π‘’ π‘™π‘–π‘˜π‘’ π‘‘π‘’π‘Ÿπ‘šπ‘  π‘₯ 2 + 𝑦 2 βˆ’6π‘₯βˆ’4𝑦+13 =13 π‘ π‘’π‘π‘‘π‘Ÿπ‘Žπ‘π‘‘ 13 π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 π‘₯ 2 + 𝑦 2 βˆ’6π‘₯βˆ’4𝑦 =0 𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑒 𝑖𝑛 π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Žπ‘  π‘Ÿ 2 βˆ’6π‘Ÿ cos πœƒ βˆ’4π‘Ÿ sin πœƒ =0 𝐺𝐢𝐹 π‘Ÿ π‘Ÿβˆ’6 cos πœƒ βˆ’4 sin πœƒ =0 r = 0 is one point, so the equation is π‘Ÿβˆ’6 cos πœƒ βˆ’4 sin πœƒ

11 Unit 6 HL 4 TB p. 492 #3, 8, 16, 25, 37 OR MathXL Unit 6 HL 4


Download ppt "Unit 6: Applications of Trigonometry"

Similar presentations


Ads by Google