Presentation is loading. Please wait.

Presentation is loading. Please wait.

Notes Assignments Tutorial problems

Similar presentations


Presentation on theme: "Notes Assignments Tutorial problems"β€” Presentation transcript:

1 Notes Assignments Tutorial problems 3.3 3.21
3.22 (a) -> Figs. (b) (d) (f) 3.24 3.25 Tutorial problems Basic Problems wish Answers 3.8 Basic Problems 3.34 Advanced Problems 3.40

2 Review for Chapter 2 Why to introduce unit impulse response?
Why to introduce convolution? (DT or CT) Signal can be represented by a linear combination of unit impulse function When it goes through the system, the output is computed via convolution of input signal and unit impulse response

3 Chapter 3 Fourier Series Representation of Periodic Signals

4 Joseph Fourier

5 A Useful Analogy

6 Example

7 Overview on Frequency Analysis
Fourier Series (Periodic/Discrete) Fourier Transform (Aperiodic/Continuous) CT Fourier Series CT Fourier Transform DT Fourier Series DT Fourier Transform Continuous-Time Domain Sampling Discrete-Time Domain Special case by using impulse function

8 Two Special Signals for LTI Systems
System Function System Function

9 System Functions H(s) or H(z)

10 Fourier and Beyond Observation: if one signal can be written as the linear combination of 𝑒 𝑠𝑑 π‘œπ‘Ÿ 𝑧 𝑛 , we need NOT to calculate the convolution for the LTI output. When 𝑠=π‘—πœ”, 𝑧= 𝑒 π‘—πœ” β‡’ 𝑒 π‘—πœ”π‘‘ , 𝑒 π‘—πœ”π‘› : πΉπ‘œπ‘’π‘Ÿπ‘–π‘’π‘Ÿ π‘†π‘’π‘Ÿπ‘–π‘’π‘  When s or z is general complex number β‡’πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’ π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘š & 𝑍 π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘š

11 A β€œSpecial” Class of Periodic Signals
CT Fourier Series: if one CT signal can be written as follows π‘₯ 𝑑 = π‘˜=βˆ’βˆž +∞ π‘Ž π‘˜ 𝑒 π‘—π‘˜ πœ” 0 𝑑 where πœ” 0 =2πœ‹/𝑇. { π‘Ž π‘˜ }: Fourier series coefficients, which represent the strength of the component 𝑒 π‘—π‘˜ πœ” 0 𝑑 . 𝑒 π‘—π‘˜ πœ” 0 𝑑 is a signal with pure frequency π‘˜ πœ” 0 β‡’ π‘₯ 𝑑 is a periodic signal with period T, it consists of components with different frequencies π‘˜ πœ” 0 and different weights.

12 Convergence of CT Fourier Series
What kind of periodic signals have Fourier series expansion? Define 𝑒 𝑑 =π‘₯ 𝑑 βˆ’ π‘˜=βˆ’βˆž +∞ π‘Ž π‘˜ 𝑒 π‘—π‘˜ πœ” 0 𝑑 , Fourier series expansion exists <=> βˆƒ {π‘Ž π‘˜ }, e(t)=0 (D1) Relaxation: Fourier series expansion exists <=> βˆƒ {π‘Ž π‘˜ }, 𝑇 | ​𝑒 𝑑 2 =0 (D2) 𝐷1βŠ‚π·2 Two kind of sufficient conditions for D2 𝑇 | ​π‘₯ 𝑑 2 𝑑𝑑<∞ Dirichlet condition

13 Dirichlet Conditions

14 Almost all the periodic signal in practice have Fourier series expansion!

15

16

17

18 Inner Product of Exponential Signals
Define inner product as < 𝒆 π’‹π’Œ 𝝎 𝟎 𝒕 β‹… 𝒆 𝒋𝒏 𝝎 𝟎 𝒕 > = 𝟏 𝑻 𝑻 𝒆 π’‹π’Œ 𝝎 𝟎 𝒕 𝒆 𝒋𝒏 𝝎 𝟎 𝒕 βˆ— 𝒅𝒕 We have < 𝒆 π’‹π’Œ 𝝎 𝟎 𝒕 β‹… 𝒆 𝒋𝒏 𝝎 𝟎 𝒕 > = 𝟏 𝐀=𝐧 < 𝒆 π’‹π’Œ 𝝎 𝟎 𝒕 β‹… 𝒆 𝒋𝒏 𝝎 𝟎 𝒕 > = 0 𝐀≠𝐧 { 𝒆 π’‹π’Œ 𝝎 𝟎 𝒕 |βˆ€π’Šπ’π’•π’†π’ˆπ’†π’“ π’Œ} is similar to basis of vector space

19 How to Obtain Fourier Coefficients
π‘₯ 𝑑 = π‘˜=βˆ’βˆž +∞ π‘Ž π‘˜ 𝑒 π‘—π‘˜ πœ” 0 𝑑 β‡’ 𝐴 = 𝐴 π‘₯ π‘₯ + 𝐴 𝑦 𝑦 + 𝐴 𝑧 𝑧 Notice 𝐴 π‘₯ = 𝐴 β‹… π‘₯ Similarly, we guess π‘Ž π‘˜ =<π‘₯ 𝑑 β‹… 𝑒 π‘—π‘˜ πœ” 0 𝑑 > Let’s double-check <π‘₯ 𝑑 β‹… 𝑒 π‘—π‘˜ πœ” 0 𝑑 > = 𝑛=βˆ’βˆž +∞ π‘Ž 𝑛 < 𝑒 𝑗𝑛 πœ” 0 𝑑 β‹… 𝑒 π‘—π‘˜ πœ” 0 𝑑 > = π‘Ž π‘˜

20 CT Fourier Series Pair Fourier series expansion

21 Example 3.5: Periodic Square Wave
T ak

22 Example Gibbs Phenomenon: The partial sum in the vicinity of the discontinuity exhibits ripples whose amplitude does not seem to decrease with increasing N

23 Periodic Impulse Train

24 (A Few ) Properties of CT Fourier Series
real

25 Time Reversal Time Scaling
the effect of sign change for x(t) and ak are identical Example: x(t): … a-2 a-1 a0 a1 a2 … x(-t): … a2 a1 a0 a-1 a-2 … Time Scaling positive real number periodic with period T/Ξ± and fundamental frequency Ξ±w0 ak unchanged, but x(Ξ±t) and each harmonic component are different

26

27 Power is the same whether measured in the time-domain or the
frequency-domain

28 More Frequency shifting Differentiation Integration
Note: x(t) is periodic with fundamental frequency Ο‰0 Frequency shifting Differentiation Integration 𝑒 𝑗𝑀 πœ” 0 𝑑 π‘₯ 𝑑    𝑏 π‘˜ = π‘Ž π‘˜βˆ’π‘€ 𝑑π‘₯ 𝑑𝑑    𝑏 π‘˜ =π‘—π‘˜ πœ” 0 π‘Ž π‘˜ βˆ’βˆž 𝑑 π‘₯(𝑑)𝑑𝑑    𝑏 π‘˜ =( 1 π‘—π‘˜ πœ” 0 ) π‘Ž π‘˜

29


Download ppt "Notes Assignments Tutorial problems"

Similar presentations


Ads by Google