Download presentation
Presentation is loading. Please wait.
1
Assessment of data quality
Mirza Muhammad Waqar Contact: EXT:2257 RG610 Course: Introduction to RS & DIP
2
Contents Hard vs Soft Classification Supervised Classification
Training Stage Field Truthing Inter class vs Intra Class Variability Classification Stage Minimum Distance to Mean Classifier Parallelepiped Classifier Maximum Likelihood Classifier Output Stage Supervised vs Unsupervised Classification These are the contents of my presentation.
3
Positional and Attribute Accuracies
Positional and attribute accuracies are the most critical factors in determining the quality of geographic data. Can be quantified by sample data (a portion of whole data set) against reference data. The concepts and methods of spatial data quality are applicable to both raster and vector data.
4
Evaluation of Positional Accuracy
Made up of two elements: Planimetric accuracy, and This is done by comparing the coordinates (x and y) of sample points on maps to the coordinates (x and y) of corresponding reference points. Height accuracy Involves comparison of elevation values of sample and reference data points.
5
Reference Data To be used as a sample point, the point must be well defined, which means that it can be unambiguously identified both on the map and on the ground. Survey monuments Bench marks Road intersections Corner of building Lampposts Fire hydrants etc.
6
Reference Data It is important for both the sample and reference data to be in the same map projection and based on the same datum. The Accuracy Standards for Large-scale Maps however, specifies that: A minimum of 20 check points must be established throughout the area covered by the map. These sample points should be spatially distributed in such a way that at least 20% of the points be located in each quadrant of the map. with individual points spaced at intervals equal to at least 10% of the diagonal of the map sheet.
7
Standard to take sample Points
8
Root Mean Square Error The discrepancies between the coordinate values of the sample points and their corresponding reference coordinate values are used to compute the overall accuracy of the map as represented by the root mean-square error (RMSE) The RMSE is defined as the square root of the average of the squared discrepancies. The RMSE for discrepancies in the X coordinate direction (rmsx) Y coordinate direction (rmsy) and elevation (rmst ) are computed from:
9
RMS for discrepancies Where
dx = discrepancies in X coordinate direction = X reference – X sample
10
RMS for discrepancies dy = discrepancies in Y coordinate direction
= Yreference – Ysample e = discrepancies in elevation = E reference – E sample n = total number of points checked (sampled)
11
RMS for discrepancies From rmsx and rmsy, a single RMSE of planimetry (rmsp) can be computed as follows.
12
RMS as Overall Accuracy
The RMSEs of planimetry and elevation have now been generally accepted as the overall accuracy of the map. RMSE is used as the index to check against specific standards to determine the fitness for use of the map. The major drawback of the RMSE is that it provides information of only the overall accuracy. It does not give any indication of the spatial variation of the errors.
13
RMS as Overall Accuracy
For users who require such information, a map showing the positional discrepancies at the sample points can be generated. Separate maps can be generated for discrepancies in easting and northing. Alternatively a map showing the vectors of discrepancies at each point can be plotted
21
Evaluation of Attribute Accuracy
Attribute accuracy is obtained by comparing values of sample spatial data units with reference data obtained either by field checks or from sources of data with a higher degree of accuracy. These sample spatial units can be raster cells; raster image pixels; or sample points, lines, and polygons.
22
Error Matrix An error matrix is constructed to show the frequency of discrepancies between encoded values (i.e., data values on a map or in a database) and their corresponding actual or reference values for a sample of locations. The error matrix has been widely used as a method for assessing classification accuracy of remotely sensed images
23
Error/Confusion Matrix
An error matrix, also known as classification error matrix or confusion matrix, is a square array of values, which cross-tabulates the number of sample spatial data units assigned to a particular category relative to the actual category as verified by the reference data.
24
Error Matrix Conventionally, the rows of the error matrix represent the categories of the classification of the database, while the columns indicate the classification of the reference data. In the error matrix, the element ij represents the frequency of spatial data units assigned to category i that actually belong to category j.
25
An Error Matrix A = Exposed soil B = Cropland C = Range
Sample Data Reference Data Total A B C D E F 1 2 3 5 10 9 4 8 7 35 A = Exposed soil B = Cropland C = Range D = Sparse woodland E = Forest F = water body
26
Error Matrix The numbers along the diagonal of the error matrix (i.e. when i = j) indicate the frequencies of correctly classified spatial data units in each category; and the off-diagonal numbers (when I j) represent the frequencies of misclassification in the various categories.
27
Error Matrix The error matrix is an effective way to describe attribute accuracy of geographic data. If in a particular error matrix, all the nonzero entries lie on the diagonal. it indicates that no misclassification at the sample locations has occurred and an overall accuracy of 100% is obtained.
28
Commission or Omission
When misclassification occurs, it can be identified either as an error of commission or an error of omission. Any misclassification is simultaneously an error of commission and an error of omission.
29
Error of Commission and Omission
Errors of commission, also known as errors of inclusion, are defined as wrongful inclusion of a sample location in a particular category due to misclassification. When this happens, it means that the same sample location is omitted from another category in the reference data, which is an error of omission.
30
Commission vs Omission
Errors of commission are identified by off- diagonal values across the rows. Errors of omission. also known as errors of exclusion, are identified by those off-diagonal values down the columns.
31
An Error Matrix Error of Commission A = Exposed soil B = Cropland
Sample Data Reference Data Total A B C D E F 1 2 3 5 10 9 4 8 7 35 Error of Commission A = Exposed soil B = Cropland C = Range D = Sparse woodland E = Forest F = water body
32
An Error Matrix Error of Omission A = Exposed soil B = Cropland
Sample Data Reference Data Total A B C D E F 1 2 3 5 10 9 4 8 7 35 Error of Omission A = Exposed soil B = Cropland C = Range D = Sparse woodland E = Forest F = water body
33
Indices to check Accuracy
In addition to the interpretation of errors of commission and omission, the error matrix may also be used to compute a series of descriptive indices to quantify the attribute accuracy of the data. These include: Overall Accuracy Producer's Accuracy User's Accuracy
34
Overall Accuracy The PCC (Percent Correctly Classified) index represents the overall accuracy of the data. In the case of simple random sampling, the PCC is defined as the trace of the error matrix (i.e., the sum of the diagonal values) divided by n, the total number of sample locations.
35
Overall Accuracy PCC = (Sd / n) * 100% Where
Sd = sum of values along diagonal n = total number of sample locations
36
PCC – Overall Accuracy A = Exposed soil B = Cropland C = Range
Sample Data Reference Data Total A B C D E F 1 2 3 5 10 9 4 8 7 35 A = Exposed soil B = Cropland C = Range D = Sparse woodland E = Forest F = water body PCC = ( ) x 100/35 PCC = 20 x 100 / 35 = 57.1%
37
Overall Accuracy The maximum value of the PCC index is 100 when there is perfect agreement between the database and the reference data. The minimum value is 0, which indicates no agreement.
38
Deficiencies in PCC index
In the first place, since the sample points are randomly selected, the index is sensitive to the structure of the error matrix. This means that if one category of data dominates the sample (this occurs when the category covers a much larger area than others), the PCC index can be quite high even if the other classes are poorly classified.
39
Deficiencies in PCC index
Second, the computation of the PCC index does not take into account the chance agreements that might occur between sample and reference data. The index therefore always tends to overestimate the accuracy of the data. Third, the PCC index does not differentiate between errors of omission and commission. Indices of these two types of errors are provided by the producer's accuracy and the user's accuracy.
40
Producer’s Accuracy This is the probability of a sample spatial data unit being correctly classified and is a measure of the error of omission for the particular category to which the sample data belong. The producer's accuracy is so-called because it indicates how accurate the classification is at the time when the data are produced.
41
Producer’s Accuracy Producer’s accuracy is computed by:
Producer’s accuracy = (Ci/Ct) * 100 Where Ci = Correctly classified sample locations in column Ct = Total number of sample locations in column Error of omission = 100 – producer’s accuracy
42
User’s Accuracy This is the probability that a spatial data unit classified on the map or image actually represents that particular category on the ground. This index of attribute accuracy, which is actually a measure of the error of commission, is of more interest to the user than the producer of the data.
43
User’s Accuracy User’s accuracy is computed by:
User’s accuracy = (Ri/Rt) * 100 where Rj = correctly classified sample locations in row Rt = total number of sample locations in row error of commission = 100 – user's accuracy
44
An Error Matrix Producer’s accuracy: User’s Accuracy:
Sample Data Reference Data Total A B C D E F 1 2 3 5 10 9 4 8 7 35 PCC = ( ) x 100/35 = 57.1% Producer’s accuracy: A = 1/1 = 100% D = 4/7 = 57.1% B = 5/10 = 50% E = 4/7 = 57.1% C = 5/9 = 55.6% F = 1/1 = 100% User’s Accuracy: A = 1/3 = 33.3% D = 4/8 = 50% B = 5/10 = 50% E = 4/4 = 100% A = Exposed soil B = Cropland C = Range D = Sparse woodland E = Forest F = water body
45
Kappa Coefficient (k) Another useful analytical technique is the computation of the kappa coefficient or Kappa Index of Agreement (KIA) It is capable of controlling the tendency of the PCC index to overestimate by incorporating all the off- diagonal values in its computation The use of the off-diagonal values in the computation of the kappa coefficients also makes them useful for testing the statistical significance of the differences in different error matrices
46
Kappa Coefficient (k) The coefficient (K), first developed by Cohen (1960) for nominal scale data K = Po – Pc / 1 – Pc Po is the proportion of agreement between the reference and sample data (PCC) Kappa coefficient varies from a minimum of 1 to a maximum of 0.
47
Tau Coefficient Kappa coefficient tends to overestimate the agreement between data sets. Foody (1992) described a modified kappa coefficient based on equal probability of group membership that resembles and is derived more properly from the tau coefficient.
48
Tau Coefficient = Po – Pr / 1 – Pr
It was demonstrated that the tau coefficient, which is based on the a priori probabilities of group membership, provides an intuitive and relatively more precise quantitative measure of classification accuracy than the kappa coefficient, which is based on the a posteriori probabilities
49
Questions & Discussion
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.