Presentation is loading. Please wait.

Presentation is loading. Please wait.

Discrete Fourier Transform

Similar presentations


Presentation on theme: "Discrete Fourier Transform"— Presentation transcript:

1 Discrete Fourier Transform

2 FFT and Its Applications
FFTSHIFT Shift zero-frequency component to the center of spectrum. For vectors, FFTSHIFT(X) swaps the left and right halves of X. For matrices, FFTSHIFT(X) swaps the first and third quadrants and the second and fourth quadrants. For N-D arrays, FFTSHIFT(X) swaps "half-spaces" of X along each dimension.

3 Example of 1-D Fourier Transform

4 fftBox.m – Plot Fourier Spectrum
% % Script file: fftBox.m % Fourier Spectrum Plot of Box function X1=linspace(0,1,17); Y1=ones(1,length(X1)); X2=linspace(1,16,241); Y2=zeros(1,length(X2)); X=[X1 X2]; Y=[Y1 Y2]; W=abs(fftshift(fft(Y))); subplot(2,1,1) plot(X,Y,'r'); axis([0 16, 0,1.2]); title('Box function') subplot(2,1,2) plot(W,'b-'); title('Fourier Spectrum of Box function')

5 2-D Discrete Fourier Transform

6 Example of 2-D FFT Matlab Code
% Script file: fourier.m - 2D Fourier Transform % Pictures on P.113 of Gonzalez, Woods, Eddins m=128; n=128; f=zeros(m,n); f(56:71,48:79)=255; F0=fft2(f); S0=abs(F0); Fc=fftshift(fft2(f)); Sc=abs(Fc); Fd=fft2(fftshift(f)); Sd=log(1+abs(Fc)); subplot(2,2,1) imshow(f,[]) subplot(2,2,2) imshow(S0,[]) subplot(2,2,3) imshow(Sc,[ ]) subplot(2,2,4) imshow(Sd,[ ])

7 2-D FFT with CenterShift

8 2-D FFT on Texture Images

9 Discrete Cosine Transform
Partition an image into nonoverlapping 8 by 8 blocks, and apply a 2d DCT on each block to get DC and AC coefficients. Most of the high frequency coefficients become insignificant, only the DC term and some low frequency AC coefficients are significant. Fundamental for JPEG Image Compression

10 Discrete Cosine Transform (DCT)
X: a block of 8x8 pixels A=Q8: 8x8 DCT matrix as shown above Y=AXAt

11 DCT on a 8x8 Block

12 Quantized DCT Coefficients

13 Matlab Code for 2d DCT Q=xlsread('Qtable.xls','A2:H9');
fin=fopen('block8x8.txt','r'); fout=fopen('dctO.txt','w'); fgetl(fin); X=fscanf(fin,'%f',[8,8]); fclose(fin); X=X'; Y=dct2(X-128,[8,8]); fprintf(fout,'DCT coefficients\n'); for i=1:8 for j=1:8 fprintf(fout,'%6.1f',Y(i,j)); end; fprintf(fout,'\n'); end Y=Y./Q; % Y=fix(Y+0.5*(Y>0)); for j=1:8 if (Y(i,j)>0) Y(i,j)=fix(Y(i,j)+0.5); else Y(i,j)=fix(Y(i,j)-0.5); end fprintf(fout,'Quantized DCT coefficients\n'); for j=1:8 fprintf(fout,'%4d',Y(i,j)); end; fprintf(fout,'\n'); fclose(fout);

14 DCT-Based JPEG Conversion
Input image write to file huffman encoding shift 128 DCT run-length encoding convert 2D matrix to 1D array round quantize with quantize matrix

15 Standard Quantization Table
run-length encoding 產生一維結果: -26,-3,0,……,-1,-1,0,0,0,0……. 後皆為零,簡化可以減少資料儲存量

16 JPEG Decoding image result read compression file huffman decoding
shift 128 IDCT run-length decoding quantize with quantize matrix convert 1D array to 2D matrix

17 未採用流程

18 壓縮結果差異

19 壓縮數據比較 原始檔案 CameraMan Plusplus lena boats 原始大小 (壓縮比) 49.3 KB 468 KB
壓縮格式 壓縮大小 zip 42.5KB (82.61%) 111KB (23.72%) 219KB (85.21%) 137KB (72.87%) rar 36.6KB (74.24%) 97.3KB (20.79%) 164KB (63.81%) 116KB (61.7%) jpg 12.9KB (26.17%) 26.5KB (5.662%) 62.0KB (24.12%) 46.6KB (24.79) project 11.2KB (22.75%) 9.48KB (2.024%) 28.1KB (10.95%) 24.3KB (12.93%)

20 壓縮數據比較


Download ppt "Discrete Fourier Transform"

Similar presentations


Ads by Google