Presentation is loading. Please wait.

Presentation is loading. Please wait.

Studying the strongly coupled N=4 plasma using AdS/CFT

Similar presentations


Presentation on theme: "Studying the strongly coupled N=4 plasma using AdS/CFT"— Presentation transcript:

1 Studying the strongly coupled N=4 plasma using AdS/CFT
Amos Yarom, Munich Together with S. Gubser and S. Pufu TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA

2 Calculating the stress-energy tensor
AdS/CFT J. Maldacena  >> 1 N >> 1

3 Calculating the stress-energy tensor
Anti-de-Sitter space. Strings in Anti-de-Sitter space. The energy momentum tensor via AdS/CFT. Results.

4 Flat space ds2 = c2 dx2+c2 dy2+c2 dz2 ds2 = dx2 + dy2 + dz2 + dw2
- dt2 y x  c x y  c y z  c z ds2 dx2 dy2 dz2 x z

5 5d Anti de-Sitter space ds2 =L2 z-2 (dz2+dx2+dy2+dw2 - dt2) + z

6 AdS5 black hole ds2 =L2 z-2 (dz2/(1-(z/z0)4)+dx2+dy2+dw2 - (1-(z/z0)4) dt2) ds2 = gdxdx z0 z

7 Strings in AdS ds2 = gdxdx ______ √g ( X)2 d d SNG= s X()
1 ___ 20 z z0 X() X(,t)

8 N=4 SYM plasma via AdS/CFT
J. Maldacena AdS5 CFT Empty AdS5 Vacuum L4/’2 gYM2 N  L3/2 G5 N2 J. Maldacena hep-th/

9 N=4 SYM plasma via AdS/CFT
Empty AdS5 AdS5 BH Thermal state Vacuum L4/’2 gYM2 N  L3/2 G5 N2 Horizon radius Temperature J. Maldacena hep-th/ E. Witten hep-th/

10 Static ‘quarks’ using AdS/CFT
AdS5 CFT J. Maldacena hep-th/ Massive particle Endpoint of an open string on the boundary AdS/CFT J. Maldacena ? z0 z  SNG  X =0

11 Moving ‘quarks’ using AdS/CFT
AdS5 CFT J. Maldacena hep-th/ Massive particle Endpoint of an open string on the boundary ? z0 z  SNG  X =0

12 Moving ‘quarks’ using AdS/CFT
AdS5 CFT J. Maldacena hep-th/ Massive particle Endpoint of an open string on the boundary z0 z  SNG  X =0

13 Extracting the stress-energy tensor using AdS/CFT
AdS5 CFT gmn|b <Tmn> E. Witten hep-th/ z0 z

14 Extracting the stress-energy tensor using AdS/CFT
z0 z AdS5 CFT gmn|b <Tmn> E. Witten hep-th/ ds2 = gdx dx g = gAdS-BH+h Metric fluctuations AdS black hole

15 The energy momentum tensor
(Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ ) g=gAdS+ h z0 z

16 Energy density for v=3/4 Over energy Under energy
(Gubser, Pufu, AY, ArXiv: , Chesler, Yaffe, ArXiv: ) Over energy Under energy

17 v=0.75 v=0.58 v=0.25

18 Small momentum approximations
(Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ )

19 Small momentum approximations
(Gubser, Pufu, AY, ArXiv: ) 1-3v2 < 0 (supersonic) 1-3v2 > 0 (subsonic)

20 Small momentum approximations
(Gubser, Pufu, AY, ArXiv: )

21 Small momentum approximations
(Gubser, Pufu, AY, ArXiv: ) s=1/3 cs2=1/3

22 Energy density for v=3/4

23

24 v=0.75 v=0.58 v=0.25

25 Large momentum approximations
(Gubser, Pufu hep-th: AY, hep-th: )

26 Large momentum approximations
(Gubser, Pufu hep-th: AY, hep-th: )

27 The Poynting vector S1 S? V=0.25 V=0.58 V=0.75
(Gubser, Pufu, AY, ArXiv: ) S1 S? V=0.25 V=0.58 V=0.75

28 Small momentum asymptotics
(Gubser, Pufu, AY, ArXiv: ) Sound Waves ?

29 Small momentum asymptotics
(Gubser, Pufu, AY, ArXiv: )

30 The poynting vector S1 S? V=0.25 V=0.58 V=0.75
(Gubser, Pufu, AY, ArXiv: ) S1 S? V=0.25 V=0.58 V=0.75

31 Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ , Gubser, Pufu, AY, ArXiv: , )

32 Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ , Gubser, Pufu, AY, ArXiv: , ) F z0 z (Herzog, Karch, Kovtun, Kozcaz, Yaffe, hep-th: , Gubser, hep-th: )

33 Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ , Gubser, Pufu, AY, ArXiv: , )

34 Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/ , Gubser, Pufu, AY, ArXiv: , ) S1

35 Summary AdS/CFT enables us to obtain the energy momentum tensor of the plasma at all scales. A sonic boom and wake exist. The ratio of energy going into sound to energy going into the wake is 1+v2:-1.

36 The energy momentum tensor
Cylindrical symmetry Gauge choice Tensor modes Vector modes

37 The energy momentum tensor
Tensor modes Vector modes + first order constraint

38 The energy momentum tensor
Tensor modes Vector modes Scalar modes + first order constraint + 3 first order constraints

39 Large momentum approximations

40 Large momentum approximations


Download ppt "Studying the strongly coupled N=4 plasma using AdS/CFT"

Similar presentations


Ads by Google