Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 35 Wave spectrum Fourier series Fourier analysis

Similar presentations


Presentation on theme: "Lecture 35 Wave spectrum Fourier series Fourier analysis"β€” Presentation transcript:

1 Lecture 35 Wave spectrum Fourier series Fourier analysis
Fourier transformation

2 Fourier series Any periodic function can be decomposed into the sum of a set of simple oscillation functions. 𝑓 𝑑 = π‘Ž 0 + 𝑛=1 ∞ [ π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ ] Where πœ”=2πœ‹/𝑇, π‘Žβ€²π‘  π‘Žπ‘›π‘‘ 𝑏 β€² 𝑠 are numerical constants which tell us how much of each component oscillation is present. Eg. cos πœ”π‘‘+πœ™ = cos πœ™ cos πœ”π‘‘ + sin πœ™ sin πœ”π‘‘

3 Square wave 𝑓 𝑑 = 4 sin πœƒ πœ‹ + 4 sin 3πœƒ 3πœ‹ + 4 sin 5πœƒ 5πœ‹ + 4 sin 7πœƒ 7πœ‹ +…

4

5 Sawtooth wave 𝑓 𝑑 =βˆ’ 2 sin πœƒ πœ‹ + 2 sin 2πœƒ 2πœ‹ βˆ’ 2 sin 3πœƒ 3πœ‹ + 2 sin 4πœƒ 4πœ‹ +…

6 𝑓 𝑑 = π‘Ž 0 + 𝑛=1 ∞ [ π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ ] For given 𝑓(𝑑), how can we find out what amount of each harmonic is required?

7 Complete orthonormal set
Sines and cosines form an orthonormal set, for π‘šβ‰ π‘› 0 𝑇 sin π‘šπœ”π‘‘ sin (π‘›πœ”π‘‘) 𝑑𝑑 = 1 πœ” 0 2πœ‹ sin π‘šπœ”π‘‘ sin π‘›πœ”π‘‘ 𝑑(πœ”π‘‘) =0 0 𝑇 sin π‘šπœ”π‘‘ cos (π‘›πœ”π‘‘) 𝑑𝑑 =0 0 𝑇 cos π‘šπœ”π‘‘ cos (π‘›πœ”π‘‘) 𝑑𝑑 =0 And 0 𝑇 sin 2 π‘šπœ”π‘‘ 𝑑𝑑 = 1 πœ” 0 2πœ‹ sin 2 π‘šπœ”π‘‘ 𝑑(πœ”π‘‘) = 𝑇 2 0 𝑇 cos 2 π‘šπœ”π‘‘ 𝑑𝑑 = 𝑇 2

8 𝑓 𝑑 = π‘Ž 0 + 𝑛=1 ∞ [ π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ ] π‘Ž 0 = 1 𝑇 0 𝑇 𝑓 𝑑 𝑑𝑑 π‘Ž 𝑛 = 2 𝑇 0 𝑇 𝑓 𝑑 cos (π‘›πœ”π‘‘) 𝑑𝑑 𝑏 𝑛 = 2 𝑇 0 𝑇 𝑓 𝑑 sin (π‘›πœ”π‘‘) 𝑑𝑑

9 Exponential expression of Fourier series
𝑓 𝑑 = π‘Ž 0 + 𝑛=1 ∞ [ π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ ] π‘Ž 𝑛 ±𝑖 𝑏 𝑛 cos π‘›πœ”π‘‘ ±𝑖 sin π‘›πœ”π‘‘ = π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ ±𝑖 π‘Ž 𝑛 sin⁑(π‘›πœ”π‘‘)βˆ“π‘– 𝑏 𝑛 cos⁑(π‘›πœ”π‘‘) 𝑓 𝑑 = 𝑛=βˆ’βˆž ∞ 𝑐 𝑛 𝑒 π‘–π‘›πœ”π‘‘ 𝑐 𝑛 = 1 2 π‘Ž 𝑛 βˆ’π‘– 𝑏 𝑛 , π‘“π‘œπ‘Ÿ 𝑛>0 π‘Ž 0 , π‘“π‘œπ‘Ÿ 𝑛=0 1 2 π‘Ž 𝑛 +𝑖 𝑏 𝑛 , π‘“π‘œπ‘Ÿ 𝑛<0

10 Complete orthonormal set
0 𝑇 𝑒 π‘–π‘›πœ”π‘‘ 𝑒 βˆ’π‘–π‘šπœ”π‘‘ 𝑑𝑑 = 0 𝑇 𝑒 𝑖 π‘›βˆ’π‘š πœ”π‘‘ 𝑑𝑑 = 0, π‘“π‘œπ‘Ÿ π‘›β‰ π‘š 𝑇, π‘“π‘œπ‘Ÿ 𝑛=π‘š 𝑓 𝑑 = 𝑛=βˆ’βˆž ∞ 𝑐 𝑛 𝑒 π‘–π‘›πœ”π‘‘ 𝑐 𝑛 = 1 T 0 𝑇 𝑓 𝑑 𝑒 βˆ’π‘–π‘›πœ”π‘‘ 𝑑𝑑

11 Energy theorem The energy in a wave is proportional to the square of its amplitude. 0 𝑇 𝑓 2 𝑑 dt= 0 𝑇 π‘Ž 0 + 𝑛=1 ∞ π‘Ž 𝑛 cos π‘›πœ”π‘‘ + 𝑏 𝑛 sin π‘›πœ”π‘‘ 𝑑𝑑 =𝑇 π‘Ž 𝑇 2 𝑛=1 ∞ ( π‘Ž 𝑏 0 2 ) The total energy in a wave is the sum of the energies in all of the Fourier components.

12 Fourier transform 𝑓 𝑑 = 𝑛=βˆ’βˆž ∞ 𝑐 𝑛 𝑒 π‘–π‘›πœ”π‘‘ , 𝑐 𝑛 = 1 T 0 𝑇 𝑓 𝑑 𝑒 βˆ’π‘–π‘›πœ”π‘‘ 𝑑𝑑 If π‘‡β†’βˆž, πœ”β†’0 𝑓 𝑑 = βˆ’βˆž ∞ 𝑐 πœ‚ 𝑒 2πœ‹π‘–πœ‚π‘‘ π‘‘πœ‚ 𝑐 πœ‚ = βˆ’βˆž ∞ 𝑓 𝑑 𝑒 βˆ’2πœ‹π‘–πœ‚π‘‘ 𝑑𝑑 c(πœ‚) is called the Fourier transform of 𝑓(𝑑). The Fourier transform expresses a function of time (or signal) in terms of the amplitude (and phase) of each of the frequencies that make it up.

13

14

15 Example of noise reduction using FT
Input image Spectrum Band-pass filter Output image

16 Gaussian wave packet Gaussian distribution
𝑓 π‘₯ = 1 𝜎 2πœ‹ 𝑒 βˆ’ π‘₯βˆ’πœ‡ 𝜎 2 A Gaussian wave packet πœ“ π‘₯,𝑑 = βˆ’βˆž ∞ 1 𝜎 π‘˜ 2πœ‹ 𝑒 βˆ’ π‘˜βˆ’ π‘˜ 𝜎 π‘˜ 2 𝑒 𝑖 π‘˜π‘₯βˆ’πœ”π‘‘ π‘‘π‘˜

17 Fourier transform of Gaussian is a Gaussian
For simplicity, consider the Fourier transformation of a Gaussian function πœ“ π‘₯ =𝐴 𝑒 βˆ’ π‘₯ 2 2 (Ξ”π‘₯) 2 Centered at π‘₯=0, with a width βˆ†π‘₯ πœ“ π‘₯ = βˆ’βˆž ∞ πœ“(π‘˜) 𝑒 π‘–π‘˜π‘₯ π‘‘π‘˜ πœ“ π‘˜ = βˆ’βˆž ∞ πœ“ π‘₯ 𝑒 π‘–π‘˜π‘₯ 𝑑π‘₯ ∝ 𝑒 βˆ’ π‘˜ 2 Ξ”π‘₯ =𝑒 βˆ’ π‘˜ 2 2 (Ξ”π‘˜) 2 Gaussian ←→ Gaussian

18 Uncertainty principle
In quantum mechanics, the momentum is 𝑝=β„π‘˜ For Gaussian wave packet Ξ”π‘˜=1/Ξ”π‘₯ Therefore Δ𝑝=ℏ/Ξ”π‘₯ π‘œπ‘Ÿ Ξ”π‘₯Δ𝑝=ℏ

19 What is the Square Kilometre Array (SKA)
Next Generation radio telescope – compared to best current instruments it is ... ~100 times sensitivity ~ 106 times faster imaging the sky More than 5 square km of collecting area on sizes 3000km E-MERLIN eVLA 27 27m dishes Longest baseline 30km GMRT 30 45m dishes Longest baseline 35 km


Download ppt "Lecture 35 Wave spectrum Fourier series Fourier analysis"

Similar presentations


Ads by Google