Presentation is loading. Please wait.

Presentation is loading. Please wait.

Concept 8.5: Regulation of enzyme activity helps control metabolism

Similar presentations


Presentation on theme: "Concept 8.5: Regulation of enzyme activity helps control metabolism"— Presentation transcript:

1 Concept 8.5: Regulation of enzyme activity helps control metabolism
Chemical chaos would result if a cell’s metabolic pathways were not tightly regulated A cell does this by switching on or off the genes that encode specific enzymes or by regulating the activity of enzymes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

2 Allosteric Regulation of Enzymes
Allosteric regulation may either inhibit or stimulate an enzyme’s activity Allosteric regulation occurs when a regulatory molecule binds to a protein at one site and affects the protein’s function at another site Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Allosteric Activation and Inhibition
Most allosterically regulated enzymes are made from polypeptide subunits Each enzyme has active and inactive forms The binding of an activator stabilizes the active form of the enzyme The binding of an inhibitor stabilizes the inactive form of the enzyme Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

4 Figure 8.20 Allosteric regulation of enzyme activity
Allosteric enyzme with four subunits Active site (one of four) Regulatory site (one of four) Activator Active form Stabilized active form Oscillation Non- functional active site Inhibitor Inactive form Stabilized inactive form Figure 8.20 Allosteric regulation of enzyme activity (a) Allosteric activators and inhibitors Substrate Inactive form Stabilized active form (b) Cooperativity: another type of allosteric activation

5 Stabilized active form
Fig. 8-20a Allosteric enzyme with four subunits Active site (one of four) Regulatory site (one of four) Activator Active form Stabilized active form Oscillation Figure 8.20a Allosteric regulation of enzyme activity Non- functional active site Inhibitor Inactive form Stabilized inactive form (a) Allosteric activators and inhibitors

6 Cooperativity is a form of allosteric regulation that can amplify enzyme activity
In cooperativity, binding by a substrate to one active site stabilizes favorable conformational changes at all other subunits Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

7 (b) Cooperativity: another type of allosteric activation
Fig. 8-20b Substrate Inactive form Stabilized active form Figure 8.20b Allosteric regulation of enzyme activity (b) Cooperativity: another type of allosteric activation

8 Identification of Allosteric Regulators
Allosteric regulators are attractive drug candidates for enzyme regulation Inhibition of proteolytic enzymes called caspases may help management of inappropriate inflammatory responses Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

9 Hypothesis: allosteric inhibitor locks enzyme in inactive form
Fig. 8-21 EXPERIMENT Caspase 1 Active site Substrate SH SH Known active form Active form can bind substrate Allosteric binding site SH S–S Allosteric inhibitor Known inactive form Hypothesis: allosteric inhibitor locks enzyme in inactive form Figure 8.21 Are there allosteric inhibitors of caspase enzymes? RESULTS Caspase 1 Inhibitor Active form Allosterically inhibited form Inactive form

10 EXPERIMENT Allosteric binding site Allosteric inhibitor Caspase 1
Fig. 8-21a EXPERIMENT Caspase 1 Active site Substrate SH SH Known active form Active form can bind substrate Figure 8.21 Are there allosteric inhibitors of caspase enzymes? Allosteric binding site SH S–S Allosteric inhibitor Known inactive form Hypothesis: allosteric inhibitor locks enzyme in inactive form

11 RESULTS Caspase 1 Inhibitor Active form Allosterically inhibited form
Fig. 8-21b RESULTS Caspase 1 Inhibitor Figure 8.21 Are there allosteric inhibitors of caspase enzymes? Active form Allosterically inhibited form Inactive form

12 Feedback Inhibition In feedback inhibition, the end product of a metabolic pathway shuts down the pathway Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

13 Fig. 8-22 Initial substrate (threonine) Active site available Threonine in active site Enzyme 1 (threonine deaminase) Isoleucine used up by cell Intermediate A Feedback inhibition Enzyme 2 Active site of enzyme 1 no longer binds threonine; pathway is switched off. Intermediate B Enzyme 3 Intermediate C Figure 8.22 Feedback inhibition in isoleucine synthesis Isoleucine binds to allosteric site Enzyme 4 Intermediate D Enzyme 5 End product (isoleucine)

14 Specific Localization of Enzymes Within the Cell
Structures within the cell help bring order to metabolic pathways Some enzymes act as structural components of membranes In eukaryotic cells, some enzymes reside in specific organelles; for example, enzymes for cellular respiration are located in mitochondria Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

15 Fig. 8-23 Mitochondria Figure 8.23 Organelles and structural order in metabolism 1 µm

16 Progress of the reaction
Fig. 8-UN2 Course of reaction without enzyme EA without enzyme EA with enzyme is lower Reactants Free energy Course of reaction with enzyme ∆G is unaffected by enzyme Products Progress of the reaction

17 Fig. 8-UN3

18 Fig. 8-UN4

19 Fig. 8-UN5

20 You should now be able to:
Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and endergonic reactions In your own words, explain the second law of thermodynamics and explain why it is not violated by living organisms Explain in general terms how cells obtain the energy to do cellular work Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

21 Explain how ATP performs cellular work
Explain why an investment of activation energy is necessary to initiate a spontaneous reaction Describe the mechanisms by which enzymes lower activation energy Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Download ppt "Concept 8.5: Regulation of enzyme activity helps control metabolism"

Similar presentations


Ads by Google