Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hiroshi Hirai University of Tokyo

Similar presentations


Presentation on theme: "Hiroshi Hirai University of Tokyo"β€” Presentation transcript:

1 Hiroshi Hirai University of Tokyo hirai@mist.i.u-tokyo.ac.jp
Computing degree of determinant via discrete convex optimization over Euclidean building Hiroshi Hirai University of Tokyo Workshop: Recent Development in Optimization 2 GRIPS, Roppongi, Tokyo, 2018/10/13

2 Contents combinatorial optimization v.s. linear algebra
non-commutative combinatorial optimization v.s. linear algebra Submodularity + Discrete convexity Background: Edmonds problem and recent development Motivation + contribution of this work

3 Edmonds Problem Can we compute the rank of linear symbolic matrix
𝐴= 𝐴 0 + 𝐴 1 π‘₯ 1 + 𝐴 2 π‘₯ 2 +…+ 𝐴 π‘š π‘₯ π‘š in polynomial time ? γ€€ π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š : variables γ€€ 𝐴 0 , 𝐴 1 ,…, 𝐴 π‘š : 𝑛×𝑛 matrices over field 𝕂   𝐴: matrix over 𝕂[ π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š ] β†ͺ 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š )

4 Algebraic Interpretation of Bipartite Matching
Motivation Algebraic Interpretation of Bipartite Matching 1 2 3 4 1 1 𝐴= π‘₯ 12 π‘₯ π‘₯ 23 π‘₯ π‘₯ π‘₯ 41 1 2 2 2 3 3 3 4 4 4 = π‘–π‘—βˆˆπΈ 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗 𝐺=(π‘ˆ,𝑉;𝐸) # maximum matching of 𝐺 =rank 𝐴 ∡det 𝐴= 𝑀 Β± 𝑖𝑗 βˆˆπ‘€ π‘₯ 𝑖𝑗 min-max formula ( KΓΆnig-EgervΓ‘ry ) polynomial time algorithm

5 Open:Deterministic polynomial time rank computation
𝐴= π‘˜=1 π‘š π‘Ž π‘˜ 𝑏 π‘˜ 𝑇 π‘₯ π‘˜ Linear matroid intersection 𝐴= π‘˜=1 π‘š (π‘Ž π‘˜ 𝑏 π‘˜ 𝑇 βˆ’ 𝑏 π‘˜ π‘Ž π‘˜ 𝑇 ) π‘₯ π‘˜ Linear matroid matching βˆƒ min-max theorem + polynomial time algorithm Edmonds 1970, LovΓ‘sz 1981 Open:Deterministic polynomial time rank computation of general 𝐴= 𝐴 0 + π‘˜=1 π‘š 𝐴 π‘˜ π‘₯ π‘˜ Randomized polynomial time algorithm (LovΓ‘sz 1979) Connection to circuit complexity (Kabanets-Impagliazzo 2004)

6 Edmonds Problem Non-commutative nc-
Ivanyos-Qiao-Subrahmanyam 2015 nc- Can we compute the rank of linear symbolic matrix 𝐴= 𝐴 0 + 𝐴 1 π‘₯ 1 + 𝐴 2 π‘₯ 2 +…+ 𝐴 π‘š π‘₯ π‘š in polynomial time ? π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š : variables 𝐴 0 , 𝐴 1 ,…, 𝐴 π‘š : matrices over field 𝕂 π‘₯ 𝑖 π‘₯ 𝑗 β‰  π‘₯ 𝑗 π‘₯ 𝑖 rank ≀ nc-rank 𝐴: free ring 𝕂 π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š free skew field 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š ) β†ͺ Amitsur 1966

7 What is free skew field 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š )?
skew field = ring s.t. βˆ€ nonzero element has inverse 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š ) := all rational expressions of +,βˆ’,Γ—,Γ·, π‘₯ 𝑖 , π‘Žβˆˆπ•‚ modulo ~ βˆ‹ 𝑝= π‘₯ 2 π‘₯ 1 π‘₯ 2 βˆ’1 + π‘₯ 3 βˆ’3 βˆ’1 𝑝 ~ π‘žβ‡”π‘ 𝑋 1 , 𝑋 2 ,…, 𝑋 π‘š = π‘ž 𝑋 1 , 𝑋 2 ,…, 𝑋 π‘š (βˆ€π‘‘, βˆ€ 𝑋 𝑖 ∈Ma t 𝑑×𝑑 (𝕂) ) It is much difficult to handle elements in 𝕂 π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š than 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š ), but ...

8 nc-rank in P !! Garg-Gurvits-Oliveira-Wigderson 2015 (FOCS’16): 𝕂=β„š
Ivanyos-Qiao-Subrahmanyam 2015 (ITCS’17): 𝕂, arbitrary Min-max theorem: Fortin-Reutenauer 2004 treatable in 𝕂 ! nc-rank 𝐴=2𝑛 βˆ’ Max. π‘Ÿ+𝑠 s.t. (βˆ€π‘–) 𝑃,𝑄: nonsingular over 𝕂 βˆ— π‘Ÿ 𝑠 𝑃 𝐴 𝑖 𝑄= rank = nc-rank bipartite matching linear matroid intersection rank < nc-rank non-bipartite matching linear matroid matching min-max theorem

9 KΓΆnig-EgervΓ‘ry from Fortin-Reutenauer
𝐺:bipartite graph 2𝑛 βˆ’ Max. π‘Ÿ+𝑠 𝑖 𝑗 1 βˆ— π‘Ÿ 𝑠 s.t. 𝑃 𝑄= (βˆ€π‘’=π‘–π‘—βˆˆπΈ) permutation matrices 𝑃,𝑄: nonsingular over 𝕂 =2π‘›βˆ’#maximum stable set =# minimun vertex cover

10 Algorithms for nc-rank
Garg-Gurvits-Oliveira-Wigderson 2015 (FOCS’16): Gurvits’ operator scaling Ivanyos-Qiao-Subrahmanyam 2015 (ITCS’17): Wong sequence --- vector-space analogue of augmenting path Hamada-Hirai 2017: Submodularity + convex optimization on CAT(0)-space They are beyond Euclidean convex optimization

11 Submodularity View Max. π‘Ÿ+𝑠 s.t. 𝑃 𝐴 𝑖 𝑄= 𝑃,𝑄: nonsingular
Hamada-Hirai 2017 Max. π‘Ÿ+𝑠 βˆ— βˆ— s.t. 𝑃 𝐴 𝑖 𝑄= βˆ— (βˆ€π‘–) π‘Ÿ βˆ— 𝑠 𝑃,𝑄: nonsingular Submodular optimization on the modular lattice of vector subspaces Max. dim 𝑋+ dim π‘Œ s. t. 𝐴 𝑖 𝑋,π‘Œ =0 𝑋,π‘ŒβŠ† 𝕂 𝑛 vector subspaces where 𝐴 𝑖 π‘₯,𝑦 ≔ π‘₯ 𝑇 𝐴 𝑖 𝑦 βˆ€π‘– =

12 Motivation of this work
~ capture β€œweighted” combinatorial optimization problems from such β€œnon-commutative” linear algebra 1 2 3 4 𝑐 12 𝑐 43 Ex: Weighted bipartite matching Max. 𝑐 𝑀 ≔ π‘–π‘—βˆˆπ‘€ 𝑐 𝑖𝑗 s.t. 𝑀: perfect matching 𝑐 𝑖𝑗 ∈ β„€ + : edge-weight

13 Algebraic Interpretation of Weighted Matching
1 𝑐 12 1 1 2 3 4 𝐴(𝑑)= 𝑑 𝑐 12 π‘₯ 𝑑 𝑐 21 π‘₯ 𝑑 𝑐 14 π‘₯ 𝑑 𝑐 23 π‘₯ 𝑑 𝑐 32 π‘₯ 32 𝑑 𝑐 41 π‘₯ 𝑑 𝑐 43 π‘₯ 43 𝑑 𝑐 44 π‘₯ 44 1 2 2 2 3 3 3 4 𝑐 43 4 4 = π‘–π‘—βˆˆπΈ 𝑑 𝑐 𝑖𝑗 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗 Max. weight of perfect matching = deg det 𝐴(𝑑) ∡deg det 𝐴=deg 𝑀 Β± 𝑑 𝑐(𝑀) 𝑖𝑗 βˆˆπ‘€ π‘₯ 𝑖𝑗 = max 𝑀 𝑐(𝑀)

14 Weighted Edmonds Problem
Can we compute deg det of 𝐴(𝑑)= 𝐴 0 (𝑑)+ 𝐴 1 (𝑑) π‘₯ 1 +…+ 𝐴 π‘š (𝑑) π‘₯ π‘š in polynomial time ? γ€€ π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š : variable γ€€ 𝐴 0 (𝑑), 𝐴 1 (𝑑),…, 𝐴 π‘š (𝑑): matrices over 𝕂[𝑑] γ€€  𝐴: matrix over 𝕂[ π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š ,𝑑] Goal: develop a non-commutative version

15 Contribution Formulate weighted non-commutative Edmonds problem
by using DieudonnΓ© determinant Det. Establish a min-max theorem for deg Det γ€€ with view from Discrete Convex Analysis beyond β„€ 𝑛 ~ L-convex function on Euclidean building Algorithm: SDA γ€€ ~ 𝑂(𝑛𝑑) nc-rank computation, 𝑑: max degree Special case of deg det = deg Det: γ€€ ~ weighted linear matroid intersection, mixed matrix

16 𝐴(𝑑)= 𝐴 0 (𝑑)+ 𝐴 1 (𝑑) π‘₯ 1 +…+ 𝐴 π‘š (𝑑) π‘₯ π‘š
How to see 𝐴(𝑑)= 𝐴 0 (𝑑)+ 𝐴 1 (𝑑) π‘₯ 1 +…+ 𝐴 π‘š (𝑑) π‘₯ π‘š Matrix over (skew) polynomial ring 𝕂 π‘₯ [t] Ore ring ---- βˆ€π‘,π‘ž,βˆƒπ‘’,𝑣:𝑝𝑒=π‘žπ‘£ β‰ 0 Matrix over Ore quotient ring 𝕂 π‘₯ (t) 𝑝 π‘ž = 𝑝 β€² π‘ž β€² β‡”βˆƒπ‘’,𝑣, 𝑝𝑒= 𝑝 β€² 𝑣,π‘žπ‘’= π‘ž β€² 𝑣 β‰ 0 Degree: deg 𝑝 π‘ž ≔ deg π‘βˆ’ deg π‘ž

17 𝐴 = 𝐿 𝐷 𝑃 π‘ˆ How to define β€œdeterminant” of matrices over skew field
𝐴: nonsingular over 𝔽 (Our case: 𝔽=𝕂 π‘₯ (t)) Bruhat decomposition: LU-decomposition of matrices over skew field uni-lower-triangular uni-upper-triangular 𝐴 = 𝐿 𝐷 𝑃 π‘ˆ diagonal permutation unique DieudonnΓ© determinant ∈ Abelization 𝔽 βˆ— /[ 𝔽 βˆ— , 𝔽 βˆ— ] of 𝔽 βˆ— Det 𝐴≔ sgn 𝑃 𝐷 11 𝐷 22 … 𝐷 𝑛𝑛 mod [ 𝔽 βˆ— , 𝔽 βˆ— ] commutator group Lem: Det 𝐴𝐡= Det 𝐴 Det 𝐡

18 Weighted Non-commutative Edmonds Problem
Can we compute deg Det of 𝐴(𝑑)= 𝐴 0 (𝑑)+ 𝐴 1 (𝑑) π‘₯ 1 +…+ 𝐴 π‘š (𝑑) π‘₯ π‘š in polynomial time ? γ€€ π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š : variables π‘₯ 𝑖 π‘₯ 𝑗 β‰  π‘₯ 𝑗 π‘₯ 𝑖 γ€€ 𝐴 0 𝑑 , 𝐴 1 𝑑 ,…, 𝐴 π‘š 𝑑 : matrices over 𝕂[𝑑]γ€€  𝐴: matrix over 𝕂( π‘₯ 1 , π‘₯ 2 ,…, π‘₯ π‘š )(𝑑) β€» deg Det is well-defined since deg is zero on commutators deg (π‘π‘ž 𝑝 βˆ’1 π‘ž βˆ’1 )=0

19 Min-Max Theorem 𝐴= 𝐴 0 + 𝐴 1 π‘₯ 1 +…+ 𝐴 π‘š π‘₯ π‘š deg Det 𝐴=
treatable in 𝕂(𝑑) 𝐴= 𝐴 0 + 𝐴 1 π‘₯ 1 +…+ 𝐴 π‘š π‘₯ π‘š deg Det 𝐴= Min. βˆ’deg det 𝑃 βˆ’ deg det Q s.t. deg 𝑃 𝐴 π‘˜ 𝑄 𝑖𝑗 ≀0 (βˆ€π‘˜,βˆ€π‘–π‘—) 𝑃,𝑄: nonsingular over 𝕂(𝑑)

20 Weak Duality deg 𝑃 𝐴 π‘˜ 𝑄 𝑖𝑗 ≀0 (βˆ€π‘˜,βˆ€π‘–π‘—) β‡’deg 𝑃𝐴𝑄 𝑖𝑗 ≀0 (βˆ€π‘–π‘—)
β‡’deg Det 𝑃𝐴𝑄≀0 β‡’deg (Det 𝑃 Det 𝐴 Det 𝑄)≀0 β‡’deg Det 𝑃 + deg Det 𝐴+deg Det 𝑄≀0 β‡’deg Det π΄β‰€βˆ’ deg Det 𝑃 βˆ’ deg Det 𝑄 = = deg det 𝑃 deg det 𝑄

21 Strong Duality + Algorithm (SDA)
𝑃𝐴𝑄= 𝑃𝐴𝑄 0 +𝑂( 𝑑 βˆ’1 ) = 𝑃 𝐴 0 𝑄 𝑃 𝐴 1 𝑄 0 π‘₯ 1 +…+ 𝑃 𝐴 π‘š 𝑄 0 π‘₯ π‘š over 𝕂( π‘₯ ) over 𝕂 𝑃𝐴𝑄 0 : nonsingular on 𝕂( π‘₯ )β‡’ deg Det 𝑃𝐴𝑄=0 β‡’ deg Det 𝐴=βˆ’deg det π‘ƒβˆ’deg det 𝑄 β‡’ 𝑃,𝑄: optimal 𝑃𝐴𝑄 0 : singular on 𝕂( π‘₯ ) β‡’ We can augment 𝑃,𝑄→ 𝑃 β€² ,𝑄′ s.t. deg det 𝑃 β€² +deg det 𝑄 β€² >deg det 𝑃+deg det 𝑄

22 𝐼 𝑂 𝑂 𝑑 𝐼 π‘Ÿ 𝑆𝑃𝐴𝑄𝑇 𝐼 𝑂 𝑂 𝑑 βˆ’1 𝐼 π‘›βˆ’π‘  β‡’ deg 𝑃 β€² 𝐴 𝑄 β€² 𝑖𝑗 ≀0
𝑃𝐴𝑄 0 : singular on 𝕂( π‘₯ ) β‡’ nc-rank of 𝑃𝐴𝑄 0 <𝑛 𝑑 βˆ’1 βˆ— π‘Ÿ 𝑠 βˆƒπ‘†,𝑇: nonsingular over 𝕂 𝑆𝑃𝐴𝑄𝑇= 𝑂( 𝑑 βˆ’1 ) 𝑑 π‘Ÿ+𝑠>𝑛 𝐼 𝑂 𝑂 𝑑 𝐼 π‘Ÿ 𝑆𝑃𝐴𝑄𝑇 𝐼 𝑂 𝑂 𝑑 βˆ’1 𝐼 π‘›βˆ’π‘  β‡’ deg 𝑃 β€² 𝐴 𝑄 β€² 𝑖𝑗 ≀0 𝑃′ 𝑄′ deg det 𝑃 β€² +deg det 𝑄 β€² =(π‘Ÿ+π‘ βˆ’π‘›)+deg det 𝑃+deg det 𝑄 >0 Long-step: use 𝐼 𝑂 𝑂 𝑑 𝛼 𝐼 π‘Ÿ , 𝐼 𝑂 𝑂 𝑑 βˆ’π›Ό 𝐼 π‘›βˆ’π‘  , 𝛼>0

23 Remarks Essence of this argument / algorithm is
in combinatorial relaxation method (Murota 1990,1995) developed for computing deg det. short-step Naive iteration bound for initial 𝑃,𝑄 =( 𝑑 βˆ’π‘‘ 𝐼,𝐼) 𝑛𝑑 (𝑑: maximum degree) π‘‘βˆ’(deg Det π΄βˆ’max deg (π‘›βˆ’1-minor)) We can improve this bound to = max deg – min deg of Smith-McMillan form of 𝐴 from view of discrete convex analysis beyond β„€ 𝑛

24 Special case of deg det = deg Det
𝐴= 𝐴 0 + 𝐴 1 π‘₯ 1 + 𝐴 2 π‘₯ 2 +…+ 𝐴 π‘š π‘₯ π‘š Thm [Ivanyos et al 2010] rank 𝐴 𝑖 =1 (βˆ€π‘– β‰₯1)⟹ rank 𝐴=nc-rank A. bipartite matching π‘–π‘—βˆˆπΈ 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗 linear matroid intersection π‘˜ π‘Ž π‘˜ 𝑏 π‘˜ 𝑇 π‘₯ π‘˜ mixed matrix (Murota-Iri 1985) 𝐴 0 + π‘–π‘—βˆˆπΈ 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗 rank 𝐴 𝑖 (𝑑)=1 (βˆ€π‘– β‰₯1)⟹ deg det 𝐴=deg Det A. 𝐴(𝑑)= 𝐴 0 (𝑑)+ 𝐴 1 (𝑑) π‘₯ 1 +…+ 𝐴 π‘š (𝑑) π‘₯ π‘š Thm [H. 18] mixed polynomial matrix weighted ver.

25 bipartite matching π‘–π‘—βˆˆπΈ 𝑑 𝑐 𝑖𝑗 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗
SDA + long-step β‰ˆ Hungarian Interpretation via Euclidean building Linear matroid π‘˜ 𝑑 𝑐 π‘˜ π‘Ž π‘˜ π‘Ž π‘˜ 𝑇 π‘₯ π‘˜ SDA + long-step β‰ˆ Greedy Linear matroid intersection π‘˜ 𝑑 𝑐 π‘˜ π‘Ž π‘˜ 𝑏 π‘˜ 𝑇 π‘₯ π‘˜ ? SDA + long-step β‰ˆ Lawler’s primal dual Lawler 1975 Mixed polynomial matrix 𝐴 0 𝑑 + π‘–π‘—βˆˆπΈ 𝑑 𝑐 𝑖𝑗 𝐸 𝑖𝑗 π‘₯ 𝑖𝑗 SDA + optimization over β„€ 𝑛 -sublattice (apartment) β‰ˆ combinatorial relaxation algo. Iwata-Takamatsu 2013 Iwata-Oki-Takamatsu 2017 dual of bipartite matching

26 = View from Discrete Convex Analysis beyond β„€ 𝑛 Dual of nc-rank
Dual of deg Det Max. π‘Ÿ+𝑠 Max. deg det 𝑃 + deg det Q βˆ— βˆ— s.t. 𝑃 𝐴 π‘˜ 𝑄= βˆ— (βˆ€π‘˜) s.t. deg 𝑃 𝐴 π‘˜ 𝑄 𝑖𝑗 ≀0 (βˆ€π‘˜,βˆ€π‘–π‘—) π‘Ÿ βˆ— 𝑠 𝑃,𝑄: nonsingular over 𝕂(𝑑) 𝑃,𝑄: nonsingular over 𝕂 = L-convex optimization on the modular lattice of free modules over PID 𝕂 𝑑 βˆ’ Max. dim 𝑋+ dim π‘Œ s. t. 𝐴 π‘˜ 𝑋,π‘Œ =0 βˆ€π‘˜ Submodular optimization on the modular lattice of vector subspaces 𝑋,π‘ŒβŠ† 𝕂 𝑛 vector subspaces where 𝐴 π‘˜ π‘₯,𝑦 ≔ π‘₯ 𝑇 𝐴 π‘˜ 𝑦

27 𝑃,𝑄: nonsingular over 𝕂(𝑑)
Max. deg det 𝑃 + deg det Q s.t. deg 𝑃 𝐴 π‘˜ 𝑄 𝑖𝑗 ≀0 (βˆ€π‘˜,βˆ€π‘–π‘—) 𝑃,𝑄: nonsingular over 𝕂(𝑑) 𝕂 𝑑 βˆ’ ≔ 𝑝 π‘ž βˆˆπ•‚ 𝑑 deg 𝑝 π‘ž ≀0} 𝑃 𝕂 𝑑 βˆ’ ⟷ full-rank free 𝕂 𝑑 βˆ’ -submodule of 𝕂 𝑑 𝑛 Max. deg 𝐿 + deg 𝑀 s.t. deg 𝐴 π‘˜ 𝐿,𝑀 βŠ†[βˆ’βˆž,0] (βˆ€π‘˜) 𝐿,𝑀: full-rank free 𝕂 𝑑 βˆ’ -submodules of 𝕂 𝑑 𝑛 = where 𝐴 π‘˜ π‘₯,𝑦 ≔ π‘₯ 𝑇 𝐴 π‘˜ 𝑦

28 β„’ 𝕂 𝑑 𝑛 ≔{ full-rank free 𝕂 𝑑 βˆ’ -submodules of 𝕂 𝑑 𝑛 }
β‰ˆ Euclidean building of SL(𝕂 𝑑 𝑛 ) Lem: β„’ 𝕂 𝑑 𝑛 is a uniform modular lattice, i.e., π‘₯⟼ π‘₯ + ≔ 𝑦 𝑦 covers π‘₯} is order-preserving bijection Rem [H. 17] : uniform modular lattice β‰ˆ Euclidean building of type A

29 Uniform modular lattice [H.17]
π‘₯⟼ π‘₯ + ≔ 𝑦 𝑦 covers π‘₯} is order-preserving bijection Ex: β„€ 𝑛 , ∧ = min, ∨ = max, π‘₯ + =π‘₯+𝟏 π‘₯ π‘₯ + Rem: β„’ 𝕂 𝑑 2 β‰ˆ β„€βŠ  infinite regular tree Ex: β„€βŠ  Tree

30 L-convexity on uniform modular lattice
Def [Murota 96] 𝑓: β„€ 𝑛 →ℝβˆͺ{∞} is L-convex: 𝑓 𝑝 +𝑓 π‘ž β‰₯𝑓 π‘βˆ§π‘ž +𝑓 π‘βˆ¨π‘ž βˆƒπ›Ό,𝑓 𝑝+𝟏 =𝑓 𝑝 +𝛼 β„’: uniform modular lattice Def [H. 17] 𝑓:ℒ→ℝβˆͺ{∞} is L-convex: 𝑓 𝑝 +𝑓 π‘ž β‰₯𝑓 π‘βˆ§π‘ž +𝑓 π‘βˆ¨π‘ž βˆƒπ›Ό,𝑓 𝑝 + =𝑓 𝑝 +𝛼 Several DCA concepts/properties are naturally extended

31 deg Det 𝐴= Min. βˆ’ deg 𝐿 βˆ’ deg 𝑀 s.t. deg 𝐴 π‘˜ 𝐿,𝑀 βŠ†[βˆ’βˆž,0] (βˆ€π‘˜) 𝐿,π‘€βˆˆ β„’ 𝕂 𝑑 𝑛 is viewed as L-convex function minimization on uniform modular lattice SDA = steepest descent algorithm for this L-convex function: π‘βŸΆ 𝑝 β€² : minimizer over [𝑝, 𝑝 + ] submodular optimization # iterations = 𝑑 ∞ (initial,opt) adapting Murota-Shioura 2014

32 Summary Edmonds problem, rank v.s. nc-rank
Weighted Edmonds problem, deg det v.s. deg Det formulation, algorithm, special case of deg det = deg Det Submodularity / discrete convexity aspect L-convexity on uniform modular lattice (= Euclidean building)

33 Problems If 𝐴= 𝐴 0 𝑑 𝑐 0 + 𝐴 1 𝑑 𝑐 1 π‘₯ 1 +…+ 𝐴 π‘š 𝑑 𝑐 π‘š π‘₯ π‘š
where 𝐴 𝑖 :𝑛×𝑛 over 𝕂, can we compute deg Det A in time polynomial in 𝑛,π‘š, and log max 𝑖 𝑐 𝑖 ? Representable by deg det but deg det < deg Det : Non-bipartite matching: Edmonds 1965 Matching forest: Giles 1982 Path matching: Cunningham-Geelen 1997 Linear matroid matching: LovΓ‘sz 1980, Iwata-Kobayashi 2017 Can we develop a unified theory ?

34 References H. Hirai: Uniform modular lattice and Euclidean building, 2017 H. Hirai: Uniform semimodular lattice and valuated matroid, 2018 H. Hirai: Computing degree of determinant via discrete convex optimization over Euclidean building, 2018. Thank you for your attention


Download ppt "Hiroshi Hirai University of Tokyo"

Similar presentations


Ads by Google