Presentation is loading. Please wait.

Presentation is loading. Please wait.

Logarithms – Learning Outcomes

Similar presentations


Presentation on theme: "Logarithms – Learning Outcomes"β€” Presentation transcript:

1 Logarithms – Learning Outcomes
Solve problems using the laws for logarithms: log π‘Ž (π‘₯𝑦) log π‘Ž π‘₯ 𝑦 log π‘Ž π‘₯ π‘ž log π‘Ž π‘Ž log π‘Ž 1 log π‘Ž π‘₯ = log 𝑏 π‘₯ log 𝑏 π‘Ž

2 Solve Problems Using the Laws for Logs
Logarithms are the inverse operation of exponentiation. Notation: log π‘Ž 𝑐=𝑏 ⇔ π‘Ž 𝑏 =𝑐 Alternatively, consider the form log π‘Ž π‘Ž 𝑏 =𝑏 Watch out for common logs - log 10 and log 𝑒 = ln

3 Solve Problems Using log π‘Ž (π‘₯𝑦)
Given that log π‘Ž 𝑐=𝑏 , and recalling π‘Ž 𝑝 Γ— π‘Ž π‘ž = π‘Ž 𝑝+π‘ž , prove that log π‘Ž π‘₯𝑦 = log π‘Ž π‘₯ + log π‘Ž 𝑦 . To make it easier, let log π‘Ž π‘₯ =𝑝 and log π‘Ž 𝑦 =π‘ž

4 Solve Problems Using log π‘Ž π‘₯𝑦
Simplify each of the following: log log 4 5 log log 3 11 log log 5 π‘Ž Solve for π‘₯: log log 3 π‘₯ =2 log 2 π‘₯ + log 2 π‘₯βˆ’3 =2 log π‘₯ log π‘₯ 16 =3

5 Solve Problems Using log π‘Ž π‘₯ 𝑦
Given that log π‘Ž 𝑐=𝑏 and π‘Ž 𝑝 π‘Ž π‘ž = π‘Ž π‘βˆ’π‘ž , prove that log π‘Ž π‘₯ 𝑦 = log π‘Ž π‘₯ βˆ’ log π‘Ž 𝑦 . Again, let log π‘Ž π‘₯ =𝑝 and log π‘Ž 𝑦 =π‘ž

6 Solve Problems Using log π‘Ž π‘₯ 𝑦
Simplify each of the following: log βˆ’ log 2 25 log βˆ’ log 5 5 log βˆ’ log 2 4 Solve for π‘₯: log βˆ’ log 2 π‘₯ =3 log 3 (π‘₯+2) βˆ’ log 3 π‘₯ =2 log π‘₯ log π‘₯ 6 =3

7 Solve Problems Using log π‘Ž π‘₯ π‘ž
Given that log π‘Ž 𝑐=𝑏 and π‘Ž 𝑝 π‘ž = a pq , prove that log π‘Ž π‘₯ π‘ž =π‘žπ‘™π‘œ 𝑔 π‘Ž π‘₯ Let log π‘Ž π‘₯=𝑝

8 Solve Problems Using log π‘Ž π‘₯ π‘ž
Simplify each of the following: log log log Solve for π‘₯: log 4 π‘₯ 2 =6 log π‘₯ =12 log π‘₯ 3 π‘₯ = 1 3

9 Solve Problems Using log π‘Ž π‘Ž and log π‘Ž 1
Using log π‘Ž 𝑐=𝑏 and π‘Ž 1 =π‘Ž, prove that log π‘Ž π‘Ž =1. Using log π‘Ž 𝑐=𝑏 and π‘Ž 0 =1, prove that log π‘Ž 1 =0

10 Solve Problems Using log π‘Ž π‘₯ = log 𝑏 π‘₯ log 𝑏 π‘Ž
Write each of the following as a quotient of log 10 : log 5 16 log 2 25 log log π‘Ž 𝑏 log 𝑐 10 log 5 𝑝 βˆ’ log 5 π‘ž

11 Solve Problems Using Logarithms
Solve for π‘₯: log 𝑏 30 βˆ’ log 𝑏 = log 𝑏 π‘₯ 2 log 𝑏 log 𝑏 9 βˆ’ log 𝑏 3 = log 𝑏 π‘₯ log 𝑏 log 𝑏 π‘₯ 2 = log 𝑏 π‘₯ log 𝑏 (π‘₯+2) βˆ’ log 𝑏 4 = log 𝑏 3π‘₯ Given that 𝑝= log 𝑐 π‘₯ , express log 𝑐 π‘₯ + log 𝑐 (𝑐π‘₯) in terms of 𝑝.

12 Solve Problems Using Logarithms
log 𝑒 is frequently used in science as many natural phenomena grow or shrink according to 𝑒 – hence it is called the natural exponential. log 𝑒 is given the special abbreviation ln . The streptococci bacteria population 𝑁 at a time 𝑑 (in months) is given by 𝑁= 𝑁 0 𝑒 2𝑑 , where 𝑁 0 is the initial population. If the initial population was 100 in a sample, how long does it take for the population to reach 1 million?


Download ppt "Logarithms – Learning Outcomes"

Similar presentations


Ads by Google