Presentation is loading. Please wait.

Presentation is loading. Please wait.

Volume of solids.

Similar presentations


Presentation on theme: "Volume of solids."β€” Presentation transcript:

1 Volume of solids

2 Sphere When you have to find half a sphere divide by 2
Example: Find the radius of a sphere with a volume of 72 meters cubed. 𝑣= 4 3 βˆ—Ξ βˆ— π‘Ÿ 3 3βˆ—72π‘š 3 = 4 3 βˆ—Ξ βˆ— π‘Ÿ 3 βˆ—3 216π‘š 3 =3βˆ—Ξ βˆ— π‘Ÿ 3 216π‘š 4Ξ  3 = 4Ξ  4Ξ  π‘Ÿ 3 54Ξ = π‘Ÿ Ξ  = 3 π‘Ÿ 3

3 Cylinder 𝒗= πœ«βˆ— 𝒓 𝟐 βˆ—π’‰ 𝒗= πœ«βˆ— (πŸπŸŽπ’Šπ’π’„π’‰) 𝟐 βˆ—πŸπŸ’ π’Šπ’π’„π’‰
Example: Find the volume of a cylinder that has a diameter of 20 inches and a height of two feet. The radius is 10 inches. Two feet equal 24 inches. 𝒗= πœ«βˆ— 𝒓 𝟐 βˆ—π’‰ 𝒗= πœ«βˆ— (πŸπŸŽπ’Šπ’π’„π’‰) 𝟐 βˆ—πŸπŸ’ π’Šπ’π’„π’‰ 𝒗= πœ«βˆ— πŸπŸŽπŸŽπ’Šπ’π’„π’‰ 𝟐 βˆ—πŸπŸ’ π’Šπ’π’„π’‰ 𝒗=πŸπŸ’πŸŽπŸŽΞ π’Šπ’π’„π’‰ 𝟐

4 Cube 𝑽=𝒂 πŸ‘ 𝑽=𝒂 πŸ‘ πŸ–πŸ“πŸ•.πŸ‘πŸπŸ“ π’„π’Ž πŸ‘ =𝒂 πŸ‘ 3 πŸ–πŸ“πŸ•.πŸ‘πŸπŸ“ π’„π’Ž πŸ‘ = 3 π‘Ž 3 9.5cm = a
Example: A cube has a volume of cm3Β­Β­Β­Β­. Find its height. 𝑽=𝒂 πŸ‘ πŸ–πŸ“πŸ•.πŸ‘πŸπŸ“ π’„π’Ž πŸ‘ =𝒂 πŸ‘ 3 πŸ–πŸ“πŸ•.πŸ‘πŸπŸ“ π’„π’Ž πŸ‘ = 3 π‘Ž 3 9.5cm = a

5 Rectangular prism V= w*l*h
Example: What is the volume of the prism? V= 10m * 4m * 5m V = 200 m3

6 Triangular Prism 𝑽= π’ƒβˆ—π’‰ 𝟐 βˆ—π‘―
Example: Find the volume of the triangular prism: 𝑽=𝒂𝒓𝒆𝒂 π’•π’“π’Šπ’‚π’π’ˆπ’π’†βˆ—πŸπŸ 𝑽= πŸ”βˆ—πŸ– 𝟐 βˆ—πŸπŸ 𝑽=πŸπŸ–πŸ–

7 Cone Example: Find the volume of the cone. Find the height
𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 5 2 + 𝑏 2 = 15 2 βˆ’ βˆ’5 2 𝑏 2 =200 𝑏=10 2 =14.1 V= 𝟏 πŸ‘ βˆ—πœ«βˆ— πŸ“ 𝟐 βˆ—14.1 V= πŸ‘πŸ”πŸ—.𝟏

8 Square Base Pyramid 𝒗= 𝟏 πŸ‘ 𝒂𝒓𝒆𝒂 𝒔𝒒𝒖𝒂𝒓𝒆 βˆ—πŸ”π’„π’Ž 𝒗= 𝟏 πŸ‘ πŸ”π’„π’Žβˆ—πŸ”π’„π’Ž βˆ—πŸπŸŽ.πŸ’π’„π’Ž
Example: Find the volume of the pyramid. Find the height 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 6 2 + 𝑏 2 = 12 2 βˆ’ βˆ’6 2 𝑏 2 =108 𝑏=6 3 =10.4cm 𝒗= 𝟏 πŸ‘ πŸ”π’„π’Žβˆ—πŸ”π’„π’Ž βˆ—πŸπŸŽ.πŸ’π’„π’Ž 𝒗=πŸπŸπŸ’.πŸ–π’„π’Ž3 𝒗= 𝟏 πŸ‘ 𝒂𝒓𝒆𝒂 𝒔𝒒𝒖𝒂𝒓𝒆 βˆ—πŸ”π’„π’Ž

9 Rectangular Pyramid V= 𝟏 πŸ‘ 𝒂𝒓𝒆𝒂 π’“π’†π’„π’•π’‚π’π’ˆπ’π’† βˆ—πŸ”π’„π’Ž V= 𝟏 πŸ‘ πŸ’π’„π’Žβˆ—πŸπŸŽπ’„π’Ž βˆ—πŸ”π’„π’Ž
Example: Find the volume of the pyramid. V= 𝟏 πŸ‘ 𝒂𝒓𝒆𝒂 π’“π’†π’„π’•π’‚π’π’ˆπ’π’† βˆ—πŸ”π’„π’Ž V= 𝟏 πŸ‘ πŸ’π’„π’Žβˆ—πŸπŸŽπ’„π’Ž βˆ—πŸ”π’„π’Ž V= 80 cm3

10 Triangular Base Pyramid
Example: Find the volume of the pyramid. V= 𝟏 πŸ‘ 𝒂𝒓𝒆𝒂 π’•π’“π’Šπ’‚π’π’ˆπ’π’† βˆ—πŸπŸπ’„π’Ž V= 𝟏 πŸ‘ πŸ”βˆ—πŸ– 𝟐 βˆ—πŸπŸπ’„π’Ž V= 96 π’„π’Ž3


Download ppt "Volume of solids."

Similar presentations


Ads by Google