Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sum-product theorems over finite fields

Similar presentations


Presentation on theme: "Sum-product theorems over finite fields"β€” Presentation transcript:

1 Sum-product theorems over finite fields

2 Goal Last week we saw Theorem[Erdos-Szemeredi]: βˆƒπœ– 𝑠.𝑑 π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ π΄βŠ‚π‘…, max 𝐴+𝐴 , 𝐴⋅𝐴 β‰₯| 𝐴| 1+πœ– We saw a proof last week of πœ–= and it’s conjectured to be close to 1. Today we wish to extend this theorem to finite Fields Problem 1: If 𝐹 has a subfield 𝐹′, then clearly for 𝐴= 𝐹 β€² , |𝐴+𝐴|=|𝐴⋅𝐴|=|𝐴| . So this limits us to 𝐹 𝑝 where p is a prime. Problem 2: It always holds that 𝐴+𝐴 , 𝐴⋅𝐴 ≀𝑝 then clearly if 𝐴 is too close to 𝑝 we can’t expect too much growth

3 Goal General statement:
βˆ€ 𝛼>0 βˆƒ πœ–>0 𝑠.𝑑 πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘π‘Ÿπ‘–π‘šπ‘’ 𝑝 π‘Žπ‘›π‘‘ 𝑠𝑒𝑑 π΄βŠ‚ 𝐹 𝑝 π‘œπ‘“ 𝑠𝑖𝑧𝑒 𝐴 ≀ 𝑝 1βˆ’π›Ό 𝑖𝑑 β„Žπ‘œπ‘™π‘‘π‘  π‘‘β„Žπ‘Žπ‘‘ max 𝐴+𝐴 , 𝐴⋅𝐴 max 𝐴+𝐴 , 𝐴⋅𝐴 β‰₯ 𝐴 1+πœ– Today we show: πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘π‘Ÿπ‘–π‘šπ‘’ 𝑝 π‘Žπ‘›π‘‘ 𝑠𝑒𝑑 π΄βŠ‚ 𝐹 𝑝 π‘œπ‘“ 𝑠𝑖𝑧𝑒 𝐴 ≀ 𝑝 0.9 𝑖𝑑 β„Žπ‘œπ‘™π‘‘π‘  π‘‘β„Žπ‘Žπ‘‘ max 𝐴+𝐴 , 𝐴⋅𝐴 β‰₯ 𝐴 𝑐 π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝑐

4 Plan Lemma 1: πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π΄βŠ‚ 𝐹 𝑝 , 𝐴 ≀ 𝑝 0.9 , 𝑖𝑑 β„Žπ‘œπ‘™π‘‘π‘  𝑅′ 𝐴 β‰₯ 𝐴 1.01
πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π΄βŠ‚ 𝐹 𝑝 , 𝐴 ≀ 𝑝 0.9 , 𝑖𝑑 β„Žπ‘œπ‘™π‘‘π‘  𝑅′ 𝐴 β‰₯ 𝐴 1.01 Where Rβ€² = π΄βˆ’π΄ β‹… π΄βˆ’π΄ + π΄βˆ’π΄ ⋅𝐴+ π΄βˆ’π΄+π΄β‹…π΄βˆ’π΄β‹…π΄ ⋅𝐴 (We saw the proof of this lemma last week) Lemma 2: 𝐿𝑒𝑑 π΄βŠ‚ 𝐹 𝑃 𝑏𝑒 𝑠.𝑑 𝐴+𝐴 , 𝐴⋅𝐴 ≀ 𝐴 1+πœ– . πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 𝑅(β‹…) π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑒π‘₯𝑖𝑠𝑑 π‘Ž 𝑠𝑒𝑏𝑠𝑒𝑑 𝐡 π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ 𝑅 𝐡 ≀ 𝐡 1+π‘πœ– π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐=𝑐(𝑅) is π‘Ž π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘‘β„Žπ‘Žπ‘‘ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘œπ‘›π‘™π‘¦ π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™

5 Proof of Theorem (Using lemmas)
Let 𝐴 ≀ 𝑝 0.9 and let πœ– be such that 𝐴+𝐴 , 𝐴⋅𝐴 ≀ |𝐴| 1+πœ– . Using lemma 2 with R’ gives us that exists π΅βŠ‚π΄ such that 𝑅 β€² 𝐡 ≀|𝐡| 1+𝑐( 𝑅 β€² )πœ– But by lemma 1 we know that 𝑅 β€² 𝐡 β‰₯|𝐡| 1.01 Meaning πœ–β‰₯ 1 100𝑐( 𝑅 β€² ) as requested.

6 Lemma 2 plan From now until the end of the talk, we aim to prove lemma 2: 𝐿𝑒𝑑 π΄βŠ‚ 𝐹 𝑃 𝑏𝑒 𝑠.𝑑 𝐴+𝐴 , 𝐴⋅𝐴 ≀ 𝐴 1+πœ– . πΉπ‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 𝑅(β‹…) π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑒π‘₯𝑖𝑠𝑑 π‘Ž 𝑠𝑒𝑏𝑠𝑒𝑑 𝐡 π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ 𝑅 𝐡 ≀ 𝐡 1+π‘πœ– π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐=𝑐(𝑅) is π‘Ž π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘‘β„Žπ‘Žπ‘‘ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘œπ‘›π‘™π‘¦ π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™

7 Proving Lemma 2 Lemma 3: Let A be a subset of an Abelian group s.t 𝐴+𝐴 ≀ 𝐾|𝐴|. Then exists π΅βŠ‚ 𝐴 of size 𝐡 β‰₯ 𝐾 βˆ’π‘‚ 1 |𝐴| s.t any 𝑏 1 – 𝑏 2 βˆˆπ΅βˆ’π΅ can be written as: 𝑏 1 βˆ’ 𝑏 2 = 𝑖=1 12 π‘Ž 𝑖 , π‘Ž 𝑖 ∈Aβˆͺβˆ’π΄ In at least 𝐾 βˆ’π‘‚ 1 𝐴 11 distinct ways and any 𝑏 1 + 𝑏 2 ∈𝐡+𝐡 can be written as 𝑏 1 + 𝑏 2 = 𝑖=1 12 π‘Ž 𝑖 , π‘Ž 𝑖 ∈Aβˆͺβˆ’π΄ Write statement on board

8 Proving Lemma 3 (1/4) We will use the BSG theorem (distinct paths of length 3 in dense bipartite graph) Let 𝑁 = |𝐴| ; Let K s.t 𝐴+𝐴 ≀ 𝐾|𝐴| Let πΆβŠ‚ 𝐴+𝐴 be the set of elements that can be written as 𝑐 = π‘Ž 1 + π‘Ž 2 in 𝑁 2π‘˜ distinct ways. We note that 𝐢 β‰₯ 𝑁 2π‘˜ (Shown on board) Denote H as the following bipartite graph: each element in a∈ 𝐴 has a vertex in both the left and the right side. 𝐸(𝐻) = {( π‘Ž 1 , π‘Ž 2 )| π‘Ž 1 + π‘Ž 2 ∈ 𝐢}

9 Proving Lemma 3 (2/4) Recall Sudakov’s Lemma - Let H = (A;B;E) be a bipartite graph with vertex sets A,B and edge set E. Assume that |𝐴|=|𝐴′| =𝑁 and |𝐸| =πœ– 𝑁 2 . Then there exist π΅βŠ‚π΄,π΅β€™βŠ‚π΄β€² of size |𝐡|,|𝐡’|β‰₯ ( πœ– )𝑁 such that for any π‘βˆˆπ΅, π‘β€²βˆˆ 𝐡’ there are at least Ξ©( πœ– 5 𝑁 2 ) paths of length 3 between b and b’. Here E = 𝐢 β‹… 𝑁 2π‘˜ β‰₯ 𝑁 2 4 π‘˜ 2 , meaning we have |𝐡|,|𝐡’|β‰₯ 𝐾 βˆ’π‘‚ 1 𝑁, where each b,b’ has at least 𝐾 βˆ’π‘‚ 1 𝑁 2 paths of length 3.

10 Proving Lemma 3 (3/4) |𝐡|,|𝐡’|β‰₯ 𝐾 βˆ’π‘‚ 1 𝑁 ; Each 𝑏,𝑏’ has at least 𝐾 βˆ’π‘‚ 1 𝑁 2 paths of length 3. A path like that looks like (b,a,a’,b’). Meaning we can write 𝑏’+𝑏= 𝑏+π‘Ž βˆ’ π‘Ž+ π‘Ž β€² + π‘Ž β€² + 𝑏 β€² = 𝑐 1 βˆ’ 𝑐 2 + 𝑐 3 In at least 𝐾 βˆ’π‘‚ 1 𝑁 2 ways. Any element in C can be written as 𝑐= π‘Ž 1 + π‘Ž 2 at least 𝑁 2π‘˜ distinct ways means that 𝑏+𝑏’= 𝑖=1 6 π‘Ž 𝑖 ; π‘Ž 𝑖 ∈𝐴βˆͺβˆ’π΄ Can be written in 𝐾 βˆ’π‘‚ 1 𝑁 5 distinct ways

11 Proving Lemma 3 (4/4) So we can express any 𝑏 1 βˆ’ 𝑏 2 βˆˆπ΅βˆ’π΅ as ( 𝑏 1 +𝑏’) – ( 𝑏 2 +𝑏’) for any π‘β€™βˆˆ 𝐡′ so overall we can express 𝑏 1 βˆ’ 𝑏 2 = 𝑖=1 12 π‘Ž 𝑖 ; π‘Ž 𝑖 ∈𝐴βˆͺβˆ’π΄ in 𝐾 βˆ’π‘‚ 1 𝑁 5 β‹… 𝐾 βˆ’π‘‚ 1 𝑁 5 β‹… 𝐾 βˆ’π‘‚ 1 𝑁= 𝐾 βˆ’π‘‚ 1 𝑁 11 ways. 𝐡+𝐡 proven in similar way

12 Lemma 4 We proceed to prove by induction that any polynomial expression does not grow (which is the original goal of lemma 2) Lemma 4: For any integers t,s there exists a constant c = c(t,s) > 0 such that the following holds. If 𝐴+𝐴 , 𝐴⋅𝐴 ≀ 𝐴 1+πœ– then there exists π΅βŠ‚ 𝐴 of size 𝐡 β‰₯ 𝐴 1βˆ’π‘πœ– such that | 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑠 𝐡 βˆ’π‘  | ≀ 𝐡 1+π‘πœ–

13 Lemma 2 Proof From Lemma 4 Reminder: PlΓΌnneke–Ruzsa theorem
𝐼𝑓 π΄βˆ’π΄ π‘œπ‘Ÿ 𝐴+𝐴 ≀ 𝐾 𝐴 π‘‘β„Žπ‘’π‘› π‘šπ΄βˆ’π‘™π΄ ≀ 𝐾 π‘š+𝑙 𝐴 for any π‘š,π‘™βˆˆπ‘ Note that this is a stronger than lemma 2 for the case of linear functions

14 Lemma 2 Proof From Lemma 4 If 𝐴+𝐴 , 𝐴⋅𝐴 ≀ 𝐴 1+πœ– then there exists π΅βŠ‚ 𝐴 of size 𝐡 β‰₯ 𝐴 1βˆ’π‘πœ– such that | 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑠 𝐡 βˆ’π‘  | ≀ 𝐡 1+π‘πœ– Plug 𝑠=0. we get that | 𝐡 𝑑 βˆ’ 𝐡 𝑑 | ≀ 𝐡 1+π‘πœ– . By PlΓΌnneke–Ruzsa theorem, there exists c’ such that | 𝑑𝐡 𝑑 βˆ’ 𝑑𝐡 𝑑 | ≀ 𝐡 1+π‘β€²πœ– . So we get that any monomial any sum of monomials over degree t is not large. Take t to be the degree of R(B) and we get that R(B) isn’t too large

15 Proving Lemma 4 (1/8) Proof by induction on t. Base case 𝑑=1
Apply lemma 3 to get a B of size 𝐡 β‰₯ 𝐴 1βˆ’π‘‚ πœ– such that 𝑏 1 – 𝑏 2 βˆˆπ΅βˆ’π΅ can be written as: 𝑏 1 βˆ’ 𝑏 2 = 𝑖=1 12 π‘Ž 𝑖 , π‘Ž 𝑖 ∈Aβˆͺβˆ’π΄ in at least 𝐴 11βˆ’π‘‚ πœ– distinct ways. So any π‘₯∈ π΅βˆ’π΅ 𝐡 𝑠 𝐡 βˆ’π‘  can be written as π‘₯= 𝑖=1 12 π‘₯ 𝑖 , π‘₯ 𝑖 ∈ Β±A 𝑠+1 𝐴 βˆ’π‘  in at least 𝐴 11βˆ’π‘‚ πœ– distinct ways.

16 Proving Lemma 4 (2/8) Applying PlΓΌnneke–Ruzsa on the multiplicative group of 𝐹 𝑝 we get that 𝐴 𝑠+1 𝐴 βˆ’π‘  ≀ 𝐴 1+ 2𝑠+1 πœ– = 𝐴 1+𝑂(πœ–π‘ ) (here m=s+1,l=s), therefore the number of choices for the π‘₯ 𝑖 ’s is a most ( 𝐴 1+𝑂 πœ–π‘  ) 12 = 𝐴 12+𝑂(πœ–π‘ ) So π΅βˆ’π΅ 𝐡 𝑠 𝐡 βˆ’π‘  ≀ 𝐴 12+𝑂 πœ–π‘  𝐴 11βˆ’π‘‚ πœ– = 𝐴 1+𝑂 πœ–π‘  ≀ 𝐡 1+𝑂 πœ–π‘  +𝑂(πœ–) Which concludes the case of t=1 (for any s).

17 Proving Lemma 4 (3/8) Assume correctness for t, and we’ll show that it holds for t+1. Let l(t,s)=t+s+12. By induction we assume that there exists π΅βŠ‚ 𝐴 of size 𝐡 β‰₯ 𝐴 1βˆ’π‘πœ– s.t | 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑙 𝐡 βˆ’π‘™ | ≀ 𝐡 1+π‘πœ– . In particular 𝐡⋅ 𝐡 ≀ 𝐡 1+π‘πœ– , so applying lemma 3 to the multiplicative group of 𝐹 𝑝 , we get that there exists πΆβŠ‚ 𝐡 of size 𝐢 β‰₯ 𝐡 1βˆ’π‘‚ π‘πœ– s.t any π‘₯∈ 𝐢⋅C can be written as π‘₯= Ξ  𝑖=1 12 𝑏 𝑖 𝑏 𝑖 ∈𝐡βˆͺ 𝐡 βˆ’1 in at least 𝐡 11βˆ’π‘‚ π‘πœ– distinct ways.

18 Proving Lemma 4 (4/8) We can assume (and lose a constant factor) that for some 1β‰€π‘šβ‰€ 12 , 𝑏 1 ,…, 𝑏 π‘š ∈ 𝐡 and 𝑏 π‘š+1 ,…, 𝑏 12 ∈ 𝐡 βˆ’1 (i.e elements in B are consecutive, and elements in 𝐡 βˆ’1 are consecutive) Multiplying by an element in 𝐢 π‘‘βˆ’1 we get that we can write any element π‘₯∈ 𝐢 𝑑+1 as π‘₯= Ξ  𝑖=1 12 𝑏 𝑖 ; 𝑏 1 ∈ 𝐡 𝑑 , 𝑏 2 ,…, 𝑏 π‘š ∈𝐡, 𝑏 π‘š+1 ,… 𝑏 12 ∈ 𝐡 βˆ’1 in at least 𝐡 11βˆ’π‘‚ π‘πœ– distinct ways. Now we look at π‘₯,π‘¦βˆˆ 𝐢 𝑑+1 , and look at π‘₯= π‘₯ 1 β‹… π‘₯ 2 ⋅…⋅ π‘₯ 12 , 𝑦= 𝑦 1 β‹… 𝑦 2 ⋅…⋅ 𝑦 12 π‘₯ 1 , 𝑦 1 ∈ 𝐡 𝑑 , π‘₯ 𝑖 , 𝑦 𝑖 ∈𝐡 π‘“π‘œπ‘Ÿ 2β‰€π‘–β‰€π‘š, π‘₯ 𝑖 , 𝑦 𝑖 ∈ 𝐡 βˆ’1 π‘“π‘œπ‘Ÿ π‘š+1≀𝑖≀12

19 Proving Lemma 4 (5/8) π‘₯βˆ’π‘¦= π‘₯ 1 β‹… π‘₯ 2 ⋅…⋅ π‘₯ 12 βˆ’ 𝑦 1 β‹… 𝑦 2 ⋅…⋅ 𝑦 12 =
π‘₯ 1 βˆ’ 𝑦 1 π‘₯ 2 π‘₯ 3 … π‘₯ 12 + 𝑦 1 π‘₯ 2 βˆ’ 𝑦 2 π‘₯ 3 … π‘₯ 12 + 𝑦 1 𝑦 2 π‘₯ 3 βˆ’ 𝑦 3 π‘₯ 4 … π‘₯ 12 + … + 𝑦 1 𝑦 2 … 𝑦 11 ( π‘₯ 12 βˆ’ 𝑦 12 ) (This is a telescopic sum)

20 Proving Lemma 4 (6/8) π‘₯ 1 βˆ’ 𝑦 1 π‘₯ 2 π‘₯ 3 … π‘₯ 12 +
π‘₯ 1 βˆ’ 𝑦 1 π‘₯ 2 π‘₯ 3 … π‘₯ 12 + 𝑦 1 π‘₯ 2 βˆ’ 𝑦 2 π‘₯ 3 … π‘₯ 12 + 𝑦 1 𝑦 2 π‘₯ 3 βˆ’ 𝑦 3 π‘₯ 4 … π‘₯ 12 + … + 𝑦 1 𝑦 2 … 𝑦 11 ( π‘₯ 12 βˆ’ 𝑦 12 ) The first sum element is contained in 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 π‘šβˆ’1 𝐡 12βˆ’π‘š The next m-1 elements are contained in B 𝑑 π΅βˆ’π΅ 𝐡 π‘šβˆ’2 𝐡 βˆ’(12βˆ’π‘š) The next 12-m elements are contained in B 𝑑 𝐡 βˆ’1 βˆ’ 𝐡 βˆ’1 𝐡 π‘šβˆ’1 𝐡 βˆ’(11βˆ’π‘š)

21 Proving Lemma 4 (7/8) It’s easy to see that 𝐡 βˆ’1 βˆ’ 𝐡 βˆ’1 βŠ‚ π΅βˆ’π΅ 𝐡 βˆ’2 .
So 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 π‘šβˆ’1 𝐡 12βˆ’π‘š , B 𝑑 π΅βˆ’π΅ 𝐡 π‘šβˆ’2 𝐡 βˆ’(12βˆ’π‘š) , B 𝑑 𝐡 βˆ’1 βˆ’ 𝐡 βˆ’1 𝐡 π‘šβˆ’1 𝐡 βˆ’(11βˆ’π‘š) are all contained in 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑑 𝐡 12 𝐡 βˆ’12 If we multiply by an element of 𝐡 𝑠 𝐡 βˆ’π‘  we get that any element of 𝐢 𝑑+1 βˆ’ 𝐢 𝑑+1 𝐢 𝑠 𝐢 βˆ’π‘  can be written as 12 terms of 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑑+𝑠+12 𝐡 βˆ’(𝑑+𝑠+12) = 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑙 𝐡 βˆ’π‘™ in 𝐡 11βˆ’π‘πœ– ways

22 Proving Lemma 4 (8/8) Any element of 𝐢 𝑑+1 βˆ’ 𝐢 𝑑+1 𝐢 𝑠 𝐢 βˆ’π‘  can be written as 12 terms of 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑑+𝑠+12 𝐡 βˆ’(𝑑+𝑠+12) = 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑙 𝐡 βˆ’π‘™ in 𝐡 11βˆ’π‘πœ– ways By induction on t we have that the number of x’s in 𝐡 𝑑 βˆ’ 𝐡 𝑑 𝐡 𝑙 𝐡 βˆ’π‘™ is at most 𝐡 12βˆ’π‘‚ π‘πœ– | 𝐢 𝑑+1 βˆ’ 𝐢 𝑑+1 𝐢 𝑠 𝐢 βˆ’π‘  |≀ 𝐡 12βˆ’π‘‚ π‘πœ– 𝐡 11βˆ’π‘‚ π‘πœ– = 𝐡 1+𝑂 π‘πœ– Which concludes the reduction and the theorem.

23 Considering the constants
We can get from the base case that 𝑐(1,𝑠) = 𝑂(𝑠) And the induction step gives us 𝑐(𝑑+1,𝑠) = 𝑂(𝑐(𝑑,𝑑+𝑠+12)) [Here the O(.) is very important)] What we’ve shown grows exponentially in t (and linearly in s) For our chosen R’ from lemma 1 Rβ€² = π΄βˆ’π΄ β‹… π΄βˆ’π΄ + π΄βˆ’π΄ ⋅𝐴+ π΄βˆ’π΄+π΄β‹…π΄βˆ’π΄β‹…π΄ ⋅𝐴 we get a very large constant, meaning we shown over all that πœ–β‰₯ 1 100𝑅 𝑐 β‰ˆ 1 100β‹…π‘π‘œπ‘›π‘  𝑑 12


Download ppt "Sum-product theorems over finite fields"

Similar presentations


Ads by Google