Download presentation
Presentation is loading. Please wait.
1
Xiao Min Tong and Chii Dong Lin
Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse Marlene Wickenhauser Collaborators: Xiao Min Tong and Chii Dong Lin
2
Schematic picture Calculation: atom laser pulse
ionization of electron atom Ar laser pulse Calculation: = 10 fs = nm Electron spectra 2D momentum distribution I ~ 2 x 1014 W/cm2
3
Motivation Recent experiments: MPI Heidelberg, KSU e- P (a.u.) atom
A. Rudenko et al. J. Phys. B 37 L407 (2004) P|| (a.u.) P (a.u.) atom 5 x 1014 W/cm2 800 nm Low energy spectra: -lots of structure even in tunneling regime
4
Multiphoton ionization
Introduction Tunneling ionization Multiphoton ionization Above-threshold-ionization (ATI) Keldysh parameter:
5
Typical ATI spectrum ħω ATI peaks Absorbed Photons 12 14 16 18 20 22
P. H. Bucksbaum PRA (1988) ħω ħω ATI peaks Ionization potential ponderomotive energy Electrons/eV Energy (eV) Helium I= 2.3 x 1014 W/cm2 = 8 ps, nm
6
Outline Theory Energy Spectra 2D electron-momentum distribution
Projection on parallel momentum
7
Theory 1) Numerical solution of TDSE
-Single active electron approximation -grid -Split operator method for time propagation 2) Strong field approximation (SFA) Neglect: -Coulomb field on ionized electrons -Depletion of ground state -Other bound states Dipole transition moment Laser-dressed energy
8
Energy spectrum SFA TDSE Argon I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs
Energy (eV)
9
Electron spectra from a short pulse
No well defined frequency & intensity time P (arb. unit) Energy (eV)
10
Redefined Volkov phase
Laser-dressed energy: energy shift: average=Up electron-field coupling Energy (eV) -No subpeaks -ATI peaks shifted
11
2D momentum Distribution - SFA
Argon I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs P (a.u.) P|| (a.u.) ATI peaks Subpeaks Parity Angular momentum Energy (eV)
12
Comparison with TDSE P (a.u.) P|| (a.u.) SFA TDSE 0 0.3 0.6 0 0.3 0.6
P (a.u.) TDSE P|| (a.u.)
13
Intensity dependence Ar 400 nm
Ip + Up threshold Channel closing: 6 ħω Ar: Ip = eV 1.7 x 1014 W/cm2: Up= 2.55 eV Ip 6 ħω intensity P (a.u.) 1.7 x 1014 W/cm2 3.2 x 1014 W/cm2 2.4 x 1014 W/cm2 3.9 x 1014 W/cm2 P|| (a.u.)
14
Momentum projection e- Interesting points: atom P (arb. unit)
Ne: 25 fs, 800 nm, I = 4 x 1014 W/cm2 Rudenko et al. J. Phys. B 37 L407 (2004) P (arb. unit) P|| (a.u.) atom Interesting points: Dip in contrast to ADK Neon, Helium: dip Argon: peak ~ 0.6
15
Explanation for dip in literature
Rescattering: J. Chen et al, PRA (R) (2000) Coulomb potential: K. Dimitriou et al, PRA (R) (2004) Position of ATI peaks: (in tunneling regime) F. H. M. Faisal et al, J. Phys. B 38 L223 (2005) Freeman Resonance: A. Rudenko et al, J. Phys. B 37 L407 (2004)
16
Argon 400 nm 10 fs dip peak Multiphoton P|| (a.u.) P|| (a.u.)
I = 1.7 x 1014 W/cm2 I = 3.9 x 1014 W/cm2 g ~ 1.76 g ~ 1.13 P|| (a.u.) P|| (a.u.) P|| (a.u.)
17
Argon 800 nm 10 fs dip peak Tunneling P|| (a.u.) P|| (a.u.)
I = 1.65 x 1014 W/cm2 I = 1.8 x 1014 W/cm2 g ~ 0.89 g ~ 0.85 P|| (a.u.) P|| (a.u.)
18
Conclusion Subpeaks in ATI spectra from short pulses
Explained structures in 2D momentum distribution Dip in parallel momentum: -Tunneling regime: ATI peaks -Multiphoton regime: Parity of first ATI peak -Coulomb effect not relevant -Longer pulses: Freeman resonances
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.