Presentation is loading. Please wait.

Presentation is loading. Please wait.

Arithmetic Statistics in Function Fields

Similar presentations


Presentation on theme: "Arithmetic Statistics in Function Fields"β€” Presentation transcript:

1 Arithmetic Statistics in Function Fields

2 The Divisor function The divisor function 𝑑 𝑛 counts the number of divisors of an integer 𝑛. 𝑑 𝑛 = π‘š|𝑛 1 = π‘š,π‘ž π‘žπ‘š=𝑛 1 Dirichlet divisor problem: Determine the asymptotic behaviour as π‘₯β†’βˆž of the sum 𝐷 π‘₯ = 𝑛≀π‘₯ 𝑑(𝑛) 𝐷 π‘₯ = 𝑛≀π‘₯ 𝑑(𝑛) = 𝑛≀π‘₯ π‘š|𝑛 1 = π‘š,π‘ž π‘žπ‘šβ‰€π‘₯ 1 This is a count of lattice points under the hyperbola π‘žπ‘š=π‘₯ Give an example

3 Counting method Make use of the symmetry of the region about the line π‘ž=π‘š β‡’ count twice the number of lattice points under the hyperbola π‘žπ‘š=π‘₯ and under the line π‘ž=π‘š. * On the diagonal line π‘ž=π‘š there are π‘₯ lattice points. * On horizontal lines we have π‘₯ π‘š βˆ’π‘š lattice points.

4 β‡’ 𝑫 𝒙 =𝒙 π₯𝐨𝐠 𝒙 + 2π›Ύβˆ’1 π‘₯+𝑢( π‘₯ ) Therefore
𝑛≀π‘₯ 𝑑(𝑛) =2 π‘šβ‰€ π‘₯ ( π‘₯ π‘š βˆ’π‘š) + π‘₯ Use 𝑦 =𝑦+𝑂(1) and the Euler summation formula π‘šβ‰€π‘₯ 1 π‘š = log π‘₯ +𝛾+𝑂 1 π‘₯ β‡’ 𝑫 𝒙 =𝒙 π₯𝐨𝐠 𝒙 + 2π›Ύβˆ’1 π‘₯+𝑢( π‘₯ )

5 Dirichlet β€˜s divisor problem: Ξ” π‘₯ ≔ 𝑛≀π‘₯ 𝑑 𝑛 βˆ’ π‘₯ log π‘₯ + 2π›Ύβˆ’1 π‘₯ Dirichlet:Ξ” π‘₯ β‰ͺ π‘₯ 1 2 Voronoi (1903):Ξ” π‘₯ β‰ͺ π‘₯ 1 3 +πœ– Huxley (2003):Ξ” π‘₯ β‰ͺ π‘₯ πœ– Problem (Divisor function in short intervals): The limiting distribution of π‘₯<𝑛≀π‘₯+𝐻(π‘₯) 𝑑(𝑛) when π‘‹β†’βˆž. The trivial range: For 𝐻 𝑋 = 𝑋 πœƒ and πœƒ> , as π‘‹β†’βˆž π‘₯<𝑛≀π‘₯+𝐻(π‘₯) 𝑑(𝑛) ~𝐻 𝑋 log 𝑋

6 The Divisor function in short intervals
Define Ξ” π‘₯;𝐻 =Ξ” π‘₯+𝐻 βˆ’Ξ” π‘₯ Ivic (2009): For 𝑋 πœ€ <𝐻< 1 2 𝑋 1 2 βˆ’πœ€ 1 𝑋 𝑋 2𝑋 Ξ” π‘₯;𝐻 2 𝑑π‘₯~𝐻 𝑃 3 ( log π‘₯βˆ’2 log 𝐻 ) with 𝑃 3 a certain cubic polynomial.

7 The generalized Divisor function
The k-th divisor function 𝒅 π’Œ 𝒏 : 𝑑 π‘˜ 𝑛 ≔#{ π‘Ž 1 ,…, π‘Ž π‘˜ : 𝑛= π‘Ž 1 β‹― π‘Ž π‘˜ , π‘Ž 1 ,…, π‘Ž π‘˜ β‰₯1} The classical divisor function 𝑑 𝑛 = π‘š|𝑛 1 being 𝑑 𝑛 = 𝑑 2 𝑛 . Example: for a prime number 𝑝, 𝑑 π‘˜ 𝑝 π‘š =#{ 𝑏 1 ,…, 𝑏 π‘˜ : π‘š= 𝑏 1 +β‹― +𝑏 π‘˜ , 𝑏 1 ,…, 𝑏 π‘˜ β‰₯0} β‡’ 𝑑 π‘˜ 𝑝 π‘š = π‘š+π‘˜βˆ’1 π‘˜βˆ’1 Generalization of Dirichlet β€˜s divisor problem: Ξ” k π‘₯ ≔ 𝑛≀π‘₯ 𝑑 π‘˜ 𝑛 βˆ’π‘₯ 𝑅 π‘˜βˆ’1 ( log π‘₯) , where 𝑅 π‘˜βˆ’1 is a certain polynomial of degree π‘˜βˆ’1. I will start by defining… Delta 2 is the error term in evaluating the sum of the classical divisor function up to x by x times a acertain linear poly in log x

8 The generalized Divisor function in short intervals
Lester (2015): 𝐻= 𝑋 𝛿 , 1βˆ’ 1 π‘˜βˆ’1 <𝛿<1βˆ’ 1 π‘˜ then (assuming 𝐿𝑖𝑛𝑑𝑒𝑙 π‘œ 𝑓) 1 𝑋 𝑋 2𝑋 Ξ” π‘˜ π‘₯;𝐻 2 𝑑π‘₯ ~ π‘Ž π‘˜ 𝑃 π‘˜ 𝛿 𝐻⋅ log 𝑋 π‘˜ 2 βˆ’1 Conjecture J.P.Keating, B.Rodgers, ER-G and Z.Rudnick (2015) 𝐻= 𝑋 𝛿 , πœ–<𝛿<1βˆ’ 1 π‘˜ , then Where 𝑃 π‘˜ 𝛿 is a piecewise polynomial function in 𝛿, of degree π‘˜ 2 βˆ’1

9 Function fields 𝑭 𝒒 a finite field (π‘ž is a power of an odd prime) 𝐅 πͺ 𝐗 the ring of polynomials with coefficients in 𝑭 𝒒 . 𝑷 𝒏 ≔ π‘“βˆˆ 𝐹 π‘ž 𝑋 : deg 𝑓=𝑛 the set of polynomials of degree 𝑛 𝑴 𝒏 ≔ π‘“βˆˆ 𝐹 π‘ž 𝑋 : deg 𝑓=𝑛 , 𝑓 π‘šπ‘œπ‘›π‘–π‘ be the subset of monic polynomials. The norm of π‘“βˆˆπΉ π‘ž [𝑋] is defined by 𝐟 := πͺ 𝐝𝐞𝐠 𝐟 . The k-th divisor function 𝑑 π‘˜ 𝑓 𝑑 π‘˜ 𝑓 ≔#{ 𝑓 1 ,…, 𝑓 π‘˜ : 𝑓= 𝑓 1 β‹― 𝑓 π‘˜ , 𝑓 1 ,…, 𝑓 π‘˜ π‘šπ‘œπ‘›π‘–π‘} Compare with number fields: 𝑋↔ π‘ž 𝑛 log 𝑋↔𝑛 β„Žβ‰€π‘‹β†”β„Žβˆˆ 𝑀 𝑛

10 Divisors in function fields
The analogue of Dirichlet divisor problem: 𝐷(𝑛)≔ π‘“βˆˆ 𝑀 𝑛 𝑑 π‘˜ 𝑓 Over function fields- an easy computation: 𝑍 𝑒 = 𝑓 π‘šπ‘œπ‘›π‘–π‘ 𝑒 deg 𝑓 = 𝑛=0 ∞ π‘ž 𝑛 𝑒 𝑛 = 1 1βˆ’π‘žπ‘’ The k-th power of the zeta function is the generating function of π‘“βˆˆ 𝑀 𝑛 𝑑 π‘˜ 𝑓 . 𝑍(𝑒) π‘˜ = 𝑓 π‘šπ‘œπ‘›π‘–π‘ 𝑑 π‘˜ 𝑓 𝑒 𝑑𝑒𝑔 𝑓 = 𝑛=0 ∞ π‘“βˆˆ 𝑀 𝑛 𝑑 π‘˜ 𝑓 𝑒 𝑛 = 1 (1βˆ’π‘žπ‘’) π‘˜ Expand + compare the coefficient of 𝑒 𝑛 β‡’ π‘“βˆˆ 𝑀 𝑛 𝑑 π‘˜ 𝑓 = π‘ž 𝑛 𝑛+π‘˜βˆ’1 π‘˜βˆ’1 .

11 Short intervals in 𝐹 π‘ž [𝑋]
For 𝐴∈ 𝑀 𝑛 and β„Ž<𝑛, an interval around 𝐴 of length β„Ž is 𝐼 𝐴;β„Ž ≔ 𝑓: π‘“βˆ’π΄ ≀ π‘ž β„Ž =𝐴+ 𝑃 β‰€β„Ž Note that H≔#𝐼 𝐴;β„Ž = π‘ž β„Ž+1 . The sum over β€œshort interval” 𝑁 𝑑 π‘˜ 𝐴;β„Ž := π‘“βˆˆπΌ 𝐴;β„Ž 𝑑 π‘˜ (𝑓) The mean value is 𝑁 𝑑 π‘˜ ∎;β„Ž = 1 π‘ž 𝑛 𝐴∈ 𝑀 𝑛 𝑁 𝑑 π‘˜ 𝐴;β„Ž Define Ξ” π‘˜ 𝐴;β„Ž ≔ 𝑁 𝑑 π‘˜ 𝐴;β„Ž βˆ’ 𝑁 𝑑 π‘˜ ∎;β„Ž Our goal: to study the variance of 𝑁 𝑑 π‘˜ (in the limit of a large field size) var 𝑁 𝑑 π‘˜ ∎;β„Ž = 1 π‘ž 𝑛 𝐴∈ 𝑀 𝑛 | Ξ” π‘˜ 𝐴;β„Ž ​ 2

12 Short intervals as arithmetic progressions
There is a bijection between Intervals and arithmetic progressions: 𝐼 𝐴;β„Ž ↔ 𝑔≑ 𝑋 𝑛 𝐴 1 𝑋 π‘šπ‘œπ‘‘ 𝑋 π‘›βˆ’β„Ž When 𝐴= 𝑋 β„Ž+1 𝐡 , deg 𝐡=π‘›βˆ’β„Žβˆ’1 This covers all intervals since 𝑀 𝑛 = βˆͺ 𝐡∈ 𝑀 π‘›βˆ’β„Žβˆ’1 𝐼( 𝑋 β„Ž+1 𝐡;β„Ž)

13 Variance in short intervals
Theorem (J.P.Keating, B.Rodgers, E.R-G and Z.Rudnick 2015) Let nβ‰₯5, and β„Žβ‰€min⁑( 1βˆ’ 1 π‘˜ π‘›βˆ’1 , π‘›βˆ’5) , then as π‘žβ†’βˆž 1 π‘ž 𝑛 𝐴∈ 𝑀 𝑛 Ξ” π‘˜ 𝐴;β„Ž 2 ~ π‘ž β„Ž+1 I k (n;nβˆ’hβˆ’2) Where I π‘˜ π‘š;𝑁 ≔ π‘ˆ 𝑁 𝑗 1 +β‹―+ 𝑗 π‘˜ =π‘š 0≀ 𝑗 1 ,…, 𝑗 π‘˜ ≀𝑁 𝑆 𝑐 𝑗 1 π‘ˆ ⋯𝑆 𝑐 𝑗 π‘˜ π‘ˆ 2 π‘‘π‘ˆ and 𝑆 𝑐 𝑗 π‘ˆ are the secular coefficients: det 𝐼+π‘₯π‘ˆ = 𝑗=0 𝑁 𝑆 𝑐 𝑗 π‘ˆ π‘₯ 𝑗 Corollary: If nβ‰₯8 and β„Ž< 𝑛 2 βˆ’1 , then as π‘žβ†’βˆž 1 π‘ž 𝑛 𝐴∈ 𝑀 𝑛 Ξ” 2 𝐴;β„Ž 2 ~ π‘ž β„Ž+1 (π‘›βˆ’2β„Ž+5)(π‘›βˆ’2β„Ž+6)(π‘›βˆ’2β„Ž+7) 6

14 Comparison between number field and function field results (short intervals)
𝑋 π‘ž 𝑛 log 𝐻 β„Ž+1 𝐻 π‘ž β„Ž+1 For 𝑋 πœ€ <𝐻< 1 2 𝑋 1/2 1 𝑋 𝑋 2𝑋 Ξ” 2 π‘₯;β„Ž 2 𝑑π‘₯~ 𝐻 𝑃 3 ( log π‘₯βˆ’2 log 𝐻 ) If β„Ž<𝑛/2 then 1 π‘ž 𝑛 𝐴∈ 𝑀 𝑛 Ξ” 2 𝐴;β„Ž 2 ~ π‘ž β„Ž+1 Poly 3 (nβˆ’2h)

15 Ingredients of the proof
Orthogonality relation for Dirichlet characters mod Q: 1 Ξ¦(𝑄) πœ’ π‘šπ‘œπ‘‘ 𝑄 πœ’ 𝐴 πœ’ 𝑁 = 𝑁=𝐴 π‘šπ‘œπ‘‘ 𝑄 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 1 Ξ¦(𝑄) 𝐴 π‘šπ‘œπ‘‘ 𝑄 πœ’ 1 𝐴 πœ’ 2 𝐴 = πœ’ 1 = πœ’ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Even characters πœ’ 𝑐𝑓 =πœ’(𝑓) for all π‘βˆˆ 𝐹 π‘ž Γ— 𝐿 𝑒,πœ’ := 𝑃,𝑄 =1 1βˆ’πœ’ 𝑃 π‘ˆ deg 𝑃 βˆ’1 = 𝑗=1 deg 𝑄 βˆ’1 (1βˆ’ 𝛼 𝑗 πœ’ 𝑒) Riemann Hypothesis (proved by Weil) : |𝛼 𝑗 πœ’ |= π‘ž 1 2 Spectral interpretation (for primitive even characters): 𝐿 𝑒,πœ’ =(1βˆ’π‘’) det (πΌβˆ’π‘’ π‘ž Θ πœ’ ) , Θ πœ’ =π‘‘π‘–π‘Žπ‘” 𝑒 𝑖 πœƒ 1 ,…, 𝑒 𝑖 πœƒ deg 𝑄 βˆ’1

16 The main ingredient Theorem (Nick Katz 2013)
The unitarized Frobenii Θ πœ’ when πœ’ is an even primitive character mod 𝑇 π‘š+1 become equidistributed in PU(m-1) as π‘žβ†’ ∞. 1 πœ™ 𝑒𝑣 βˆ— 𝑇 π‘›βˆ’β„Ž πœ’ π‘šπ‘œπ‘‘ 𝑇 π‘›βˆ’β„Ž πœ’β‰  πœ’ 0 πœ’ 𝑖𝑠 𝑒𝑣𝑒𝑛 π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘–π‘šπ‘–π‘‘π‘–π‘£π‘’ 𝐹( Θ πœ’ ) ~ π‘ƒπ‘ˆ(π‘›βˆ’β„Žβˆ’2) 𝐹 π‘ˆ π‘‘π‘ˆ

17 Sketch of the proof Write the L-functions in terms of unitary matrices
π‘“βˆˆ 𝑀 𝑛 𝑑 π‘˜ 𝑓 β†’ evaluated in terms of 𝑍 𝑒 π‘“βˆˆπΌ 𝐴;β„Ž 𝑑 π‘˜ (𝑓) β†’ restrict to an interval using orthogonality relations for Dirichlet character β†’ evaluate in terms of the associated Dirichlet L- functions Write the L-functions in terms of unitary matrices 𝐿 𝑒,πœ’ = 1βˆ’π‘’ det πΌβˆ’π‘’ π‘ž Θ πœ’ The variance ~ 1 πœ™ 𝑒𝑣 βˆ— 𝑇 π‘›βˆ’β„Ž πœ’ π‘šπ‘œπ‘‘ 𝑇 π‘›βˆ’β„Ž πœ’β‰  πœ’ 0 πœ’ 𝑖𝑠 𝑒𝑣𝑒𝑛 π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘–π‘šπ‘–π‘‘π‘–π‘£π‘’ 𝑗 1 +β‹―+ 𝑗 π‘˜ =n 0≀ 𝑗 1 ,…, 𝑗 π‘˜ ≀nβˆ’hβˆ’2 𝑆 𝑐 𝑗 1 Θ πœ’ ⋯𝑆 𝑐 𝑗 π‘˜ Θ πœ’ 2

18 Sketch of the proof Apply Katz equidistribution result
1 πœ™ 𝑒𝑣 βˆ— 𝑇 π‘›βˆ’β„Ž πœ’ π‘šπ‘œπ‘‘ 𝑇 π‘›βˆ’β„Ž πœ’β‰  πœ’ 0 πœ’ 𝑖𝑠 𝑒𝑣𝑒𝑛 π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘–π‘šπ‘–π‘‘π‘–π‘£π‘’ 𝑗 1 +β‹―+ 𝑗 π‘˜ =n 0≀ 𝑗 1 ,…, 𝑗 π‘˜ ≀nβˆ’hβˆ’2 𝑆 𝑐 𝑗 1 Θ πœ’ ⋯𝑆 𝑐 𝑗 π‘˜ Θ πœ’ 2 ~ π‘ˆ nβˆ’hβˆ’ 𝑗 1 +β‹―+ 𝑗 π‘˜ =n 0≀ 𝑗 1 ,…, 𝑗 π‘˜ ≀nβˆ’hβˆ’2 𝑆 𝑐 𝑗 1 π‘ˆ ⋯𝑆 𝑐 𝑗 π‘˜ π‘ˆ 2 π‘‘π‘ˆ

19 Matrix Integral What do we know about I π‘˜ π‘š;𝑁 ≔ π‘ˆ 𝑁 𝑗 1 +β‹―+ 𝑗 π‘˜ =π‘š 0≀ 𝑗 1 ,…, 𝑗 π‘˜ ≀𝑁 𝑆 𝑐 𝑗 1 π‘ˆ ⋯𝑆 𝑐 𝑗 π‘˜ π‘ˆ 2 π‘‘π‘ˆ ? For π‘š>π‘˜π‘ , I π‘˜ π‘š;𝑁 =0. I π‘˜ π‘š;𝑁 = π‘š+ π‘˜ 2 βˆ’1 π‘˜ 2 βˆ’1 , π‘š<𝑁 Functional equation I π‘˜ π‘š;𝑁 = I π‘˜ π‘˜π‘βˆ’π‘š;𝑁 . β‡’ I π‘˜ π‘š;𝑁 = π‘˜π‘βˆ’π‘š+ π‘˜ 2 βˆ’1 π‘˜ 2 βˆ’1 , π‘˜βˆ’1 𝑁<π‘š<π‘˜π‘

20 Theorem (J. P. Keating, B. Rodgers, ER-G and Z
Theorem (J.P.Keating, B.Rodgers, ER-G and Z.Rudnick) I π‘˜ π‘š;𝑁 is equal to the count of lattice points π‘₯=( π‘₯ 𝑖 𝑗 )∈ (β„€) π‘˜ 2 satisfying each of the relations 0≀ π‘₯ 𝑖 𝑗 ≀𝑁 for all 1≀𝑖,π‘—β‰€π‘˜. π‘₯ 1 π‘˜ + π‘₯ 2 π‘˜βˆ’1 +β‹―+ π‘₯ π‘˜ 1 =π‘˜π‘βˆ’π‘š. π‘₯∈ 𝐴 π‘˜ , where 𝐴 π‘˜ is the collection of π‘˜Γ—π‘˜ matrices whose entries satisfy the following system of equalities,

21 Theorem (J.P.Keating, B.Rodgers, E.Rβˆ’G and Z.Rudnick 2015)
Let π‘Ÿβ‰”π‘š/𝑁. Then for π‘Ÿβˆˆ 0,π‘˜ , I π‘˜ π‘š;𝑁 = 𝛾 π‘˜ π‘Ÿ 𝑁 π‘˜ 2 βˆ’1 +𝑂( 𝑁 π‘˜ 2 βˆ’2 ) With 𝛾 π‘˜ π‘Ÿ = 1 π‘˜!𝐺 1+π‘˜ ,1 π‘˜ 𝛿 π‘Ÿ 𝑀 1 +β‹―+ 𝑀 π‘˜ 𝑖<𝑗 𝑀 𝑖 βˆ’ 𝑀 𝑗 d k w Here 𝐺 is the Barnes G-function, so that for positive integers k, 𝐺 1+π‘˜ =1!βˆ™2!βˆ™3!βˆ™β‹― π‘˜βˆ’1 ! 𝛾 π‘˜ π‘Ÿ is a piecewise polynomial which changes when ever π‘Ÿ reaches an integer.

22 Thank you!


Download ppt "Arithmetic Statistics in Function Fields"

Similar presentations


Ads by Google