Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 24 The Origin of Species.

Similar presentations


Presentation on theme: "Chapter 24 The Origin of Species."— Presentation transcript:

1 Chapter 24 The Origin of Species

2 Overview: That “Mystery of Mysteries”
In the Galápagos Islands Darwin discovered plants and animals found nowhere else on Earth Video: Galápagos Tortoise

3 Animation: Macroevolution
Speciation, the origin of new species, is at the focal point of evolutionary theory Evolutionary theory must explain how new species originate and how populations evolve Microevolution consists of adaptations that evolve within a population, confined to one gene pool Macroevolution refers to evolutionary change above the species level Animation: Macroevolution

4 Concept 24.1: The biological species concept emphasizes reproductive isolation
Species is a Latin word meaning “kind” or “appearance” Biologists compare morphology, physiology, biochemistry, and DNA sequences when grouping organisms

5 The Biological Species Concept
The biological species concept states that a species is a group of populations whose members have the potential to interbreed in nature and produce viable, fertile offspring; they do not breed successfully with other populations Gene flow between populations holds the phenotype of a population together

6 (a) Similarity between different species
Fig. 24-2 (a) Similarity between different species Figure 24.2 The biological species concept is based on the potential to interbreed rather than on physical similarity (b) Diversity within a species

7 Figure 24.3 Does gene flow occur between widely separated populations?
EXPERIMENT Example of a gene tree for population pair A-B Allele Population Gene flow event 1 B Allele 1 is more closely related to alleles 2, 3, and 4 than to alleles 5, 6, and 7. Inference: Gene flow occurred. 2 A 3 A 4 A 5 B Alleles 5, 6, and 7 are more closely related to one another than to alleles in population A. Inference: No gene flow occurred. 6 B 7 B RESULTS Pair of populations with detected gene flow Estimated minimum number of gene flow events to account for genetic patterns Distance between populations (km) Figure 24.3 Does gene flow occur between widely separated populations? A-B 5 340 K-L 3 720 A-C 2–3 1,390 B-C 2 1,190 F-G 2 760 G-I 2 1,110 C-E 1–2 1,310

8 Reproductive Isolation
Reproductive isolation is the existence of biological factors (barriers) that impede two species from producing viable, fertile offspring Hybrids are the offspring of crosses between different species Reproductive isolation can be classified by whether factors act before or after fertilization

9 Prezygotic barriers block fertilization from occurring by:
Impeding different species from attempting to mate Preventing the successful completion of mating Hindering fertilization if mating is successful

10 Habitat isolation: Two species encounter each other rarely, or not at all, because they occupy different habitats, even though not isolated by physical barriers

11 Figure 24.4 Reproductive barriers
Prezygotic barriers Postzygotic barriers Habitat Isolation Temporal Isolation Behavioral Isolation Mechanical Isolation Gametic Isolation Reduced Hybrid Viability Reduced Hybrid Fertility Hybrid Breakdown Individuals of different species Mating attempt Viable, fertile offspring Fertilization (a) (c) (e) (f) (g) (h) (i) (l) (d) (j) (b) Figure 24.4 Reproductive barriers (k)

12 Temporal isolation: Species that breed at different times of the day, different seasons, or different years cannot mix their gametes

13 Behavioral isolation: Courtship rituals and other behaviors unique to a species are effective barriers Video: Albatross Courtship Ritual Video: Giraffe Courtship Ritual Video: Blue-footed Boobies Courtship Ritual

14 Mechanical isolation: Morphological differences can prevent successful mating

15 Bradybaena with shells spiraling in opposite directions
Fig. 24-4h (f) Figure 24.4 Reproductive barriers Bradybaena with shells spiraling in opposite directions

16 Gametic isolation: Sperm of one species may not be able to fertilize eggs of another species

17 Postzygotic barriers prevent the hybrid zygote from developing into a viable, fertile adult:
Reduced hybrid viability Reduced hybrid fertility Hybrid breakdown

18 Reduced hybrid viability: Genes of the different parent species may interact and impair the hybrid’s development

19 Hybrid breakdown: Some first-generation hybrids are fertile, but when they mate with another species or with either parent species, offspring of the next generation are feeble or sterile

20 Hybrid cultivated rice plants with stunted offspring (center)
Fig. 24-4p (l) Figure 24.4 Reproductive barriers Hybrid cultivated rice plants with stunted offspring (center)

21 Limitations of the Biological Species Concept
The biological species concept cannot be applied to fossils or asexual organisms (including all prokaryotes)

22 Other Definitions of Species
Other species concepts emphasize the unity within a species rather than the separateness of different species The morphological species concept defines a species by structural features It applies to sexual and asexual species but relies on subjective criteria

23 The ecological species concept views a species in terms of its ecological niche
It applies to sexual and asexual species and emphasizes the role of disruptive selection The phylogenetic species concept: defines a species as the smallest group of individuals on a phylogenetic tree It applies to sexual and asexual species, but it can be difficult to determine the degree of difference required for separate species


Download ppt "Chapter 24 The Origin of Species."

Similar presentations


Ads by Google