Presentation is loading. Please wait.

Presentation is loading. Please wait.

FP3 Chapter 4 Integration

Similar presentations


Presentation on theme: "FP3 Chapter 4 Integration"β€” Presentation transcript:

1 FP3 Chapter 4 Integration
Dr J Frost Last modified: 25th January 2017

2 FP3 Integration Overview
This chapter is long and perilous, but you will learn lots of interesting new techniques as well as reprising existing ones… Section C: Arc lengths and surface area Section B: Reduction Formulae Length of a curve. A technique for dealing with large powers in integration. Surface area of volumes of revolution. Using substitutions Use π‘₯=π‘Ž tan πœƒ to find 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Completing the square 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Standard results sinh π‘₯ 𝑑π‘₯ Section A: General Skills By parts 0 1 𝑒 2π‘₯ π‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯

3 SECTION A PART 1 :: Standard Integrals
Same as non-hyperbolic version? sinh π‘₯ 𝑑π‘₯ = cosh π‘₯ +𝐢 cosh π‘₯ 𝑑π‘₯ = sinh π‘₯ +𝐢 sech 2 π‘₯ 𝑑π‘₯ = tanh π‘₯ +𝐢 cosech 2 π‘₯ 𝑑π‘₯ = βˆ’coth π‘₯ +𝐢 sech π‘₯ tanh π‘₯ 𝑑π‘₯ = βˆ’ sech π‘₯ +𝐢 cosech π‘₯ coth π‘₯ 𝑑π‘₯ = βˆ’cosech π‘₯ +𝐢 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ < π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1 ?  ? οƒΌ ? οƒΌ ? οƒΌ Not in formula booklet. ?  οƒΌ ? ? ? ? ?

4 Click only if you’ve forgotten them.
Quickfire Examples – Do From Memory! Recall from C4 that: 𝒇 β€² 𝒂𝒙+𝒃 𝒅𝒙 = 𝟏 𝒂 𝒇 𝒂𝒙+𝒃 +π‘ͺ e.g. 𝑒 3π‘₯+2 𝑑π‘₯ = 1 3 𝑒 3π‘₯+2 cosh 4π‘₯βˆ’1 𝑑π‘₯ = 𝟏 πŸ’ 𝐬𝐒𝐧𝐑 πŸ’π’™βˆ’πŸ +π‘ͺ π‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯= πŸ‘ 𝟐 𝐜𝐨𝐬𝐑 𝟐 πŸ‘ 𝒙 +π‘ͺ π‘π‘œπ‘ π‘’π‘β„Ž 3π‘₯ coth 3π‘₯ 𝑑π‘₯=βˆ’ 𝟏 πŸ‘ 𝒄𝒐𝒔𝒆𝒄𝒉 πŸ‘π’™+π‘ͺ 𝑠𝑒𝑐 β„Ž 2 π‘₯+1 𝑑π‘₯= 𝐭𝐚𝐧𝐑 𝒙+𝟏 +π‘ͺ sech 4π‘₯ tanh 4π‘₯ 𝑑π‘₯=βˆ’ 𝟏 πŸ’ 𝐬𝐞𝐜𝐑 πŸ’π’™ +π‘ͺ π‘π‘œπ‘ π‘’π‘ β„Ž 2 2π‘₯βˆ’1 𝑑π‘₯=βˆ’ 𝟏 𝟐 𝐜𝐨𝐭𝐑 πŸπ’™βˆ’πŸ +π‘ͺ ? sinh π‘₯ 𝑑π‘₯ = cosh π‘₯ +𝐢 cosh π‘₯ 𝑑π‘₯ = sinh π‘₯ +𝐢 sech 2 π‘₯ 𝑑π‘₯ = tanh π‘₯ +𝐢 cosech 2 π‘₯ 𝑑π‘₯ = βˆ’coth π‘₯ +𝐢 sech π‘₯ tanh π‘₯ 𝑑π‘₯ = βˆ’ sech π‘₯ +𝐢 cosech π‘₯ coth π‘₯ 𝑑π‘₯ = βˆ’cosech π‘₯ +𝐢 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ < π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1 ? Click only if you’ve forgotten them. ? ? ? ? ?

5 Integration by Recognition
Recall from C4 that: 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑛 𝑑π‘₯= 𝑓 π‘₯ 𝑛+1 𝑛+1 +𝐢 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑑π‘₯ = ln 𝑓 π‘₯ +𝐢 4π‘₯ 1+ π‘₯ 2 𝑑π‘₯ =𝟐 πŸπ’™ 𝟏+ 𝒙 𝟐 𝒅𝒙 =𝟐 π₯𝐧 𝟏+ 𝒙 𝟐 +π‘ͺ 5π‘₯ 1+ π‘₯ 2 𝑑π‘₯= πŸ“π’™ 𝟏+ 𝒙 𝟐 βˆ’ 𝟏 𝟐 𝒅𝒙 Try π’š= 𝟏+ 𝒙 𝟐 𝟏 𝟐 π’…π’š 𝒅𝒙 = πŸπ’™ 𝟏 𝟐 𝟏+ 𝒙 𝟐 βˆ’ 𝟏 𝟐 =𝒙 𝟏+𝒙 βˆ’ 𝟏 𝟐 ∴ πŸ“π’™ 𝟏+ 𝒙 𝟐 𝒅𝒙= πŸ“ 𝟏+ 𝒙 𝟐 +π‘ͺ sin 2π‘₯ cos 𝑛 π‘₯ 𝑑π‘₯ = 𝟐 π’βˆ’πŸ 𝐜𝐨𝐬 πŸβˆ’π’ 𝒙 +𝒄 ? ? ? Bro Tip: If there’s a power outside in the denominator, always reexpress as product first. ?

6 Exercise 4A Integrate the following with respect to π‘₯. sinh π‘₯ +3 cosh π‘₯ β†’ 𝐜𝐨𝐬𝐑 𝒙 +πŸ‘ 𝐬𝐒𝐧𝐑 𝒙 +π‘ͺ 5 sech 2 π‘₯ β†’πŸ“ 𝐭𝐚𝐧𝐑 𝒙 +π‘ͺ 1 sinh 2 π‘₯ β†’βˆ’ 𝐜𝐨𝐭𝐑 𝒙 +π‘ͺ cosh π‘₯ βˆ’ 1 cosh 2 π‘₯ β†’ 𝐬𝐒𝐧𝐑 𝒙 βˆ’ 𝐭𝐚𝐧𝐑 𝒙 +π‘ͺ sinh π‘₯ cosh 2 π‘₯ β†’βˆ’ 𝐬𝐞𝐜𝐑 𝒙 +π‘ͺ 3 sinh π‘₯ tanh π‘₯ β†’βˆ’πŸ‘π’„π’π’”π’†π’„π’‰ 𝒙+π‘ͺ sech π‘₯ sech π‘₯ + tanh π‘₯ β†’ 𝐭𝐚𝐧𝐑 𝒙 βˆ’ 𝐬𝐞𝐜𝐑 𝒙 +π‘ͺ sech π‘₯ +π‘π‘œπ‘ π‘’π‘β„Ž π‘₯ sech π‘₯ βˆ’π‘π‘œπ‘ π‘’π‘β„Ž π‘₯ β†’ 𝐭𝐚𝐧𝐑 𝒙 + 𝐜𝐨𝐭𝐑 𝒙 +π‘ͺ Find sinh 2π‘₯ 𝑑π‘₯ = 𝟏 𝟐 𝐜𝐨𝐬𝐑 𝒙 +π‘ͺ cosh π‘₯ 3 𝑑π‘₯ =πŸ‘ 𝐬𝐒𝐧𝐑 𝒙 πŸ‘ +π‘ͺ sech 2 2π‘₯βˆ’1 𝑑π‘₯ = 𝟏 𝟐 𝐭𝐚𝐧𝐑 πŸπ’™βˆ’πŸ +π‘ͺ cosech 2 5π‘₯ 𝑑π‘₯ =βˆ’ 𝟏 πŸ“ 𝐜𝐨𝐭𝐑 πŸ“π’™ +π‘ͺ cosech 2π‘₯ coth 2π‘₯ 𝑑π‘₯ =βˆ’ 𝟏 𝟐 𝒄𝒐𝒔𝒆𝒄𝒉 πŸπ’™+π‘ͺ sech π‘₯ tanh π‘₯ 𝑑π‘₯ =βˆ’ 𝟐 𝐬𝐞𝐜𝐑 𝒙 𝟐 (5 sinh 5π‘₯ βˆ’4 cosh 4π‘₯ +3 sech 2 π‘₯ 2 𝑑π‘₯ = 𝐜𝐨𝐬𝐑 πŸ“π’™ βˆ’ 𝐬𝐒𝐧𝐑 πŸ’π’™ +πŸ” 𝐭𝐚𝐧𝐑 𝒙 𝟐 +π‘ͺ 1 3 Write down the results of the following. (This is a recognition exercise and involves the integrals from C4) 1 1+ π‘₯ 2 𝑑π‘₯ = 𝐚𝐫𝐜𝐭𝐚𝐧 𝒙 +π‘ͺ π‘₯ 2 𝑑π‘₯ =π’‚π’“π’”π’Šπ’π’‰ 𝒙+π‘ͺ 1 1+π‘₯ 𝑑π‘₯ = π₯𝐧 |𝟏+𝒙| +π‘ͺ 2π‘₯ 1+ π‘₯ 2 𝑑π‘₯ = π₯𝐧 (𝟏+ 𝒙 𝟐 ) +π‘ͺ 1 1βˆ’ π‘₯ 2 𝑑π‘₯ =π’‚π’“π’”π’Šπ’ 𝒙+π‘ͺ 1 π‘₯ 2 βˆ’1 𝑑π‘₯ =𝒂𝒓𝒄𝒐𝒔𝒉 𝒙+π‘ͺ 3π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯ =πŸ‘ 𝒙 𝟐 βˆ’πŸ +π‘ͺ 3 1+π‘₯ 2 𝑑π‘₯ =βˆ’ πŸ‘ 𝟏+𝒙 +π‘ͺ Find 2π‘₯+1 1βˆ’ π‘₯ 2 𝑑π‘₯ =βˆ’πŸ πŸβˆ’ 𝒙 𝟐 + 𝐚𝐫𝐜𝐬𝐒𝐧 𝒙 +π‘ͺ 1+π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯ =𝒂𝒓𝒄𝒐𝒔𝒉 𝒙+ 𝒙 𝟐 βˆ’πŸ +π‘ͺ π‘₯βˆ’ π‘₯ 2 𝑑π‘₯ = 𝟏+ 𝒙 𝟐 βˆ’πŸ‘ 𝐚𝐫𝐜𝐬𝐒𝐧𝐑 𝒙 +π‘ͺ ? a ? b ? c ? ? d ? ? e ? ? f ? g ? h ? ? 2 ? ? a ? ? b ? ? c ? d 4 ? e ? ? ? f g ? ?

7 Exercise 4A ? 5 Show that π‘₯ 2 1+ π‘₯ 2 =1βˆ’ 1 1+ π‘₯ 2
Hence find π‘₯ π‘₯ 2 𝑑π‘₯ π’™βˆ’ 𝐚𝐫𝐜𝐭𝐚𝐧 𝒙 +π‘ͺ ?

8 Integrating when not quite so standard
sech 6 π‘₯ tanh π‘₯ 𝑑π‘₯ Method 1: β€œConsider and scale” Method 2: β€œPut in form 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑛 ” ? Try 𝑦= sech 6 π‘₯ = π‘ π‘’π‘β„Ž π‘₯ 𝑑𝑦 𝑑π‘₯ =6 sech 5 π‘₯ Γ—βˆ’ sech π‘₯ tanh π‘₯ =βˆ’6 sech 5 π‘₯ tanh π‘₯ ∴ sech 6 π‘₯ tanh π‘₯ 𝑑π‘₯ =βˆ’ sech 6 π‘₯ +𝐢 ? sech 6 π‘₯ tanh π‘₯ 𝑑π‘₯ =βˆ’ βˆ’ sech π‘₯ tanh π‘₯ sech π‘₯ 5 =βˆ’ sech 6 π‘₯ +𝐢 Bro Note: For π‘ π‘’π‘β„Ž, don’t increment power by 1, because we know differentiating π‘ π‘’π‘β„Ž gives us another π‘ π‘’π‘β„Ž Reminder: 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑛 𝑑π‘₯= 𝑓 π‘₯ 𝑛+1 𝑛+1 +𝐢 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑑π‘₯ = ln 𝑓 π‘₯ +𝐢

9 Integrating when not quite so standard
cosh 5 2π‘₯ sinh 2π‘₯ 𝑑π‘₯ ? (Using Method 1) Try π’š= 𝐜𝐨𝐬𝐑 πŸ” πŸπ’™ π’…π’š 𝒅𝒙 =πŸ” 𝐜𝐨𝐬𝐑 πŸ“ πŸπ’™ Γ—πŸπ’”π’Šπ’π’‰ πŸπ’™ =𝟏𝟐 𝐜𝐨𝐬𝐑 πŸ“ πŸπ’™ π’”π’Šπ’π’‰ πŸπ’™ ∴ 𝒄𝒐𝒔𝒉 πŸ“ πŸπ’™ π’”π’Šπ’π’‰ πŸπ’™ 𝒅𝒙 = 𝟏 𝟏𝟐 𝐜𝐨𝐬𝐑 πŸ” πŸπ’™ +π‘ͺ tanh π‘₯ 𝑑π‘₯ sech 2 π‘₯ 2+5 tanh π‘₯ 𝑑π‘₯ ? ? = sinh π‘₯ cosh π‘₯ 𝑑π‘₯ = ln cosh π‘₯ +𝐢 = 1 5 ln 2+5 tanh π‘₯ Note that because π‘π‘œπ‘ β„Ž differentiates to positive π‘ π‘–π‘›β„Ž, unlike the non-hyperbolic version, we don’t have the minus.

10 Using Identities ? ? ? tanh 2 π‘₯ 𝑑π‘₯ cosh 2 3π‘₯ 𝑑π‘₯
Use double angle formulae for cos 2𝐴 = 1βˆ’ sech 2 π‘₯ 𝑑π‘₯ =π‘₯βˆ’ tanh π‘₯ +𝐢 Recap: If you forget a hyperbolic identity, use Osborn’s Rule. = cosh 6π‘₯ 𝑑π‘₯ = 1 2 π‘₯ sinh 6π‘₯ +𝐢 sinh 3 π‘₯ 𝑑π‘₯ ? = sinh 2 π‘₯ sinh π‘₯ 𝑑π‘₯ = cosh 2 π‘₯ βˆ’1 sinh π‘₯ 𝑑π‘₯ = cosh 2 π‘₯ sinh π‘₯ βˆ’ sinh π‘₯ 𝑑π‘₯ = cosh 3 π‘₯ βˆ’ cosh π‘₯ +𝐢 Use this approach in general for small odd powers of sinh and cosh.

11 When that doesn’t work…
Sometimes there are techniques which work on non-hyperbolic trig functions but doesn’t work on hyperbolic ones. Find 𝑒 2π‘₯ sinh π‘₯ 𝑑π‘₯ Find sech π‘₯ 𝑑π‘₯ ? ? 𝑒 2π‘₯ sinh π‘₯ 𝑑π‘₯ = 𝑒 2π‘₯ 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2 = 𝑒 3π‘₯ βˆ’ 𝑒 π‘₯ 𝑑π‘₯ = 𝑒 3π‘₯ βˆ’3 𝑒 π‘₯ +𝐢 = 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ 𝑑π‘₯ = 2 𝑒 π‘₯ 𝑒 2π‘₯ +1 𝑑π‘₯ Use the substitution 𝑒= 𝑒 π‘₯ 𝑑𝑒 𝑑π‘₯ = 𝑒 π‘₯ βˆ΄π‘‘π‘’= 𝑒 π‘₯ 𝑑π‘₯ 2 𝑒 π‘₯ 𝑒 2π‘₯ +1 𝑑π‘₯= 𝑒 2 +1 𝑑𝑒 =2 arctan 𝑒 +𝐢 =2 arctan 𝑒 π‘₯ +𝐢 (Integration by parts DOES also work, but requires a significantly greater amount of working!) (Bro Exam Note: This very question appeared June 2014, except involving definite integration)

12 Exercise 4B 1 Find sinh 3 π‘₯ cosh π‘₯ 𝑑π‘₯ = 𝟏 πŸ’ 𝐬𝐒𝐧𝐑 πŸ’ 𝒙 +π‘ͺ tanh 4π‘₯ 𝑑π‘₯ = 𝟏 πŸ’ π₯𝐧 𝐜𝐨𝐬𝐑 πŸ’π’™ +π‘ͺ tanh 5 π‘₯ sech 2 π‘₯ 𝑑π‘₯ = 𝟏 πŸ” 𝐭𝐚𝐧𝐑 πŸ” 𝒙 +π‘ͺ π‘π‘œπ‘ π‘’π‘ β„Ž 7 π‘₯ coth π‘₯ 𝑑π‘₯ =βˆ’ 𝟏 πŸ• 𝒄𝒐𝒔𝒆𝒄 𝒉 πŸ• 𝒙+π‘ͺ cosh 2π‘₯ sinh 2π‘₯ 𝑑π‘₯ = 𝟏 πŸ‘ 𝐜𝐨𝐬𝐑 πŸπ’™ πŸ‘ 𝟐 +π‘ͺ sech 10 3π‘₯ tanh 3π‘₯ 𝑑π‘₯ =βˆ’ 𝟏 πŸ‘πŸŽ 𝐬𝐞𝐜𝐑 𝟏𝟎 πŸ‘π’™ +π‘ͺ sinh π‘₯ 2+3 cosh π‘₯ 𝑑π‘₯ = 𝟏 πŸ‘ π₯𝐧 𝟐+πŸ‘ 𝐜𝐨𝐬𝐑 𝒙 +π‘ͺ 1+ tanh π‘₯ cosh 2 π‘₯ 𝑑π‘₯ = 𝐭𝐚𝐧𝐑 𝒙 + 𝟏 𝟐 𝐭𝐚𝐧𝐑 𝟐 𝒙 +π‘ͺ 5 cosh π‘₯ +2 sinh π‘₯ cosh π‘₯ 𝑑π‘₯ =πŸ“π’™+𝟐 π₯𝐧 𝐜𝐨𝐬𝐑 𝒙 +π‘ͺ Show that coth π‘₯ 𝑑π‘₯ = π₯𝐧 𝐬𝐒𝐧𝐑 𝒙 +π‘ͺ Show that coth 2π‘₯ 𝑑π‘₯ = π₯𝐧 𝒆 𝟐 + 𝟏 𝒆 𝟐 Use integration by parts to find: π‘₯ sinh 3π‘₯ 𝑑π‘₯ = 𝟏 πŸ‘ 𝒙 𝐜𝐨𝐬𝐑 πŸ‘π’™ βˆ’ 𝟏 πŸ— 𝐬𝐒𝐧𝐑 πŸ‘π’™ +π‘ͺ π‘₯𝑠𝑒𝑐 β„Ž 2 π‘₯ 𝑑π‘₯ =𝒙 𝐭𝐚𝐧𝐑 𝒙 βˆ’ π₯𝐧 𝐜𝐨𝐬𝐑 𝒙 +π‘ͺ 5 Find 𝑒 π‘₯ cosh π‘₯ 𝑑π‘₯ = 𝟏 πŸ’ 𝒆 πŸπ’™ + 𝟏 𝟐 𝒙+π‘ͺ 𝑒 βˆ’2π‘₯ sinh 3π‘₯ 𝑑π‘₯ = 𝟏 𝟐 𝒆 𝒙 + 𝟏 𝟏𝟎 𝒆 βˆ’πŸ“π’™ +π‘ͺ cosh π‘₯ cosh 3π‘₯ 𝑑π‘₯ = 𝟏 πŸπŸ” 𝒆 πŸ’π’™ βˆ’ 𝟏 πŸπŸ” 𝒆 βˆ’πŸ’π’™ + 𝟏 πŸ– 𝒆 πŸπ’™ βˆ’ 𝟏 πŸ– 𝒆 βˆ’πŸπ’™ +π‘ͺ By writing cosh 3π‘₯ in exponential form, find cosh 2 3π‘₯ 𝑑π‘₯ and show that it is equivalent to the result found in 5b. Evaluate sinh π‘₯ + cosh π‘₯ 𝑑π‘₯ , giving your answer in terms of 𝑒. πŸβˆ’ 𝟏 𝒆 ? ? ? ? ? ? ? ? ? 6 2 ? ? ? 7 3 ? ? ? 4 ? ?

13 Exercise 4B Use appropriate identities to find: sinh 2 π‘₯ 𝑑π‘₯ = 𝟏 πŸ’ 𝐬𝐒𝐧𝐑 πŸπ’™ βˆ’ 𝟏 𝟐 𝒙+π‘ͺ sech π‘₯ βˆ’ tanh π‘₯ 2 𝑑π‘₯=𝒙+𝟐 𝐬𝐞𝐜𝐑 𝒙 +π‘ͺ cosh 2 3π‘₯ sinh 2 3π‘₯ 𝑑π‘₯ =π’™βˆ’ 𝟏 πŸ‘ 𝐜𝐨𝐭𝐑 πŸ‘π’™ +π‘ͺ sinh 2 π‘₯ cosh 2 π‘₯ 𝑑π‘₯ =βˆ’ 𝟏 πŸ– 𝒙+ 𝟏 πŸ‘πŸ 𝐬𝐒𝐧𝐑 πŸ’π’™ +π‘ͺ cosh 5 π‘₯ 𝑑π‘₯ = 𝐬𝐒𝐧𝐑 𝒙 + 𝟐 πŸ‘ 𝐬𝐒𝐧𝐑 πŸ‘ 𝒙 + 𝟏 πŸ“ 𝐬𝐒𝐧𝐑 πŸ“ 𝒙 +π‘ͺ tanh 3 2π‘₯ 𝑑π‘₯ = 𝟏 𝟐 π₯𝐧 𝐜𝐨𝐬𝐑 πŸπ’™ βˆ’ 𝟏 πŸ’ 𝐭𝐚𝐧𝐑 𝟐 πŸπ’™ +π‘ͺ Show that 0 ln 2 cosh 2 π‘₯ 2 𝑑π‘₯ = ln 16 The region bounded by the curve 𝑦= sinh π‘₯ , the line π‘₯=1 and the positive π‘₯-axis is rotated through 360Β° about the π‘₯-axis. Show that the volume of the solid of revolution formed is πœ‹ 8 𝑒 2 𝑒 4 βˆ’4 𝑒 2 βˆ’1 11 Using the result for sech π‘₯ 𝑑π‘₯ given in the examples, find 2 cosh π‘₯ 𝑑π‘₯ =πŸ’ 𝐚𝐫𝐜𝐭𝐚𝐧 𝒆 𝒙 +π‘ͺ sech 2π‘₯ 𝑑π‘₯ = 𝐚𝐫𝐜𝐭𝐚𝐧 𝒆 πŸπ’™ +π‘ͺ 1βˆ’ tanh 2 π‘₯ 2 𝑑π‘₯ =πŸ’ 𝐚𝐫𝐜𝐭𝐚𝐧 𝒆 𝒙 𝟐 +π‘ͺ Using the substitution 𝑒= π‘₯ 2 or otherwise, find π‘₯ cosh 2 π‘₯ 2 𝑑π‘₯= 𝟏 πŸ– 𝐬𝐒𝐧𝐑 𝟐 𝒙 𝟐 + 𝒙 𝟐 πŸ’ +π‘ͺ π‘₯ cosh 2 π‘₯ 2 𝑑π‘₯ = 𝟏 𝟐 𝐭𝐚𝐧𝐑 𝒙 𝟐 +π‘ͺ 8 ? ? ? ? ? ? ? ? ? 12 ? 9 ? 10

14 Using substitutions From earlier: 1 1βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ < π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1 Use an appropriate substitution to show that π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 ? Bro Hint: Think what value of π‘₯ would make 1+ π‘₯ 2 nicely simplify. π‘₯= tan πœƒ π‘₯= sinh 𝑒 would also work as 1+ sinh 2 𝑒 = cosh 2 𝑒 ? 𝑑π‘₯ π‘‘πœƒ = sec 2 πœƒ β†’ 𝑑π‘₯= sec 2 πœƒ π‘‘πœƒ π‘₯ 2 𝑑π‘₯ = tan 2 πœƒ sec 2 πœƒ π‘‘πœƒ = 1 π‘‘πœƒ =πœƒ+𝐢 = arctan π‘₯ +𝐢

15 Dealing with 1/( π‘Ž 2 βˆ’ π‘₯ 2 ) , 1/ π‘Ž 2 βˆ’ π‘₯ 2 , ….
Sensible substitution and why? ? π‘₯=π‘Žπ‘ π‘–π‘›πœƒ (but π‘₯= acos πœƒ would work fine) The denominator changes from sin to cos but cancels with the cos obtained from differentiating the substitution. 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ π‘₯ <π‘Ž ? 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ π‘₯= π‘Žtan πœƒ As per example on previous slide. π‘₯= sinh 𝑒 tan wouldn’t work as well this time because the denominator would simplify to π‘Ž sec πœƒ , but we’d be multiplying by π‘Ž sec 2 πœƒ , meaning not all the secs would cancel. With sinh 𝑒 the two cosh 𝑒 ’s obtained would fully cancel. ? 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ 1 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ ? π‘₯= cosh 𝑒 sin 2 πœƒ + cos 2 πœƒ =1 1+ tan 2 πœƒ = sec 2 πœƒ 1+ sinh 2 𝑒 = cosh 2 𝑒

16 Dealing with 1/( π‘Ž 2 βˆ’ π‘₯ 2 ) , 1/ π‘Ž 2 βˆ’ π‘₯ 2 , ….
Use an appropriate substitution to show that π‘₯ 2 𝑑π‘₯= 1 2 arctan π‘₯ 2 +𝐢 Let π‘₯=2 tan πœƒ 𝑑π‘₯ π‘‘πœƒ =2 sec 2 πœƒ β†’ 𝑑π‘₯=2 sec 2 πœƒ π‘‘πœƒ 1 4+ π‘₯ 2 𝑑π‘₯ = tan 2 πœƒ 2 sec 2 πœƒ π‘‘πœƒ = sec 2 πœƒ 4 sec 2 πœƒ π‘‘πœƒ = π‘‘πœƒ = 1 2 πœƒ+𝐢 = 1 2 arctan π‘₯ 2 +𝐢 ? ! Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž Bro Note: Notice these are the same as results when π‘Ž=1, except with π‘₯ replaced with π‘₯ π‘Ž The one exception is π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› one which is scaled by 1 π‘Ž

17 Dealing with 1/( π‘Ž 2 βˆ’ 𝑏 2 π‘₯ 2 ) , …. ? ? Find 1 25+9 π‘₯ 2 𝑑π‘₯
= π‘₯ 2 𝑑π‘₯ = 1 9 Γ— π‘Žπ‘Ÿπ‘‘π‘Žπ‘› π‘₯ 𝐢 = arctan 3π‘₯ 5 +𝐢 = βˆ’ βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin 2π‘₯ βˆ’ = πœ‹ 12 βˆ’ βˆ’ πœ‹ 12 = πœ‹ 6 ? Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž

18 ? Using a seemingly-sensible-but-turns-out-rather-nasty substitution
Harder Example Show that π‘₯ 2 𝑑π‘₯ = 1 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+ 1 2 π‘₯ 1+ π‘₯ 2 +𝐢. (Hint: Use a sensible substitution) ? Using a seemingly-sensible-but-turns-out-rather-nasty substitution Trying π‘₯=tanβ‘πœƒ: 𝑑π‘₯ π‘‘πœƒ = sec 2 πœƒ β†’ 𝑑π‘₯= sec 2 πœƒ π‘‘πœƒ 1+ π‘₯ 2 𝑑π‘₯ = π‘ π‘’π‘πœƒ sec 2 πœƒ π‘‘πœƒ Using integration by parts: 𝑒=π‘ π‘’π‘πœƒ 𝑑𝑣 𝑑π‘₯ = sec 2 πœƒ 𝑑𝑒 𝑑π‘₯ =π‘ π‘’π‘πœƒ tan πœƒ 𝑣=π‘‘π‘Žπ‘›πœƒ sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec πœƒ tan 2 πœƒ π‘‘πœƒ+𝐢 sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec πœƒ ( sec 2 πœƒβˆ’1) π‘‘πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec 3 πœƒ + π‘ π‘’π‘πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ =π‘ π‘’π‘πœƒ tan πœƒ + ln sec πœƒ + tan πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ = 1 2 secπœƒ tan πœƒ ln sec πœƒ + tan πœƒ +𝐢′ = 1 2 π‘₯ 1+ π‘₯ ln π‘₯ 2 +π‘₯ +𝐢′ = 1 2 π‘₯ 1+ π‘₯ π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+𝐢′ ? Using the other-possible-substitution-that-turns-out-much-more-pretty-yay Trying π‘₯= sinh 𝑒 : 𝑑π‘₯ 𝑑𝑒 = cosh 𝑒 β†’ 𝑑π‘₯= cosh 𝑒 𝑑𝑒 1+ π‘₯ 2 𝑑π‘₯ = cosh 𝑒 Γ— cosh 𝑒 𝑑𝑒 = cosh 2 𝑒 𝑑𝑒 = cosh 2𝑒 𝑑𝑒 = 1 2 𝑒 sinh 2𝑒 +𝐢 = 1 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+ 1 2 π‘₯ 1+ π‘₯ 2 +𝐢

19 Test Your Understanding
? Using a hyperbolic substitution, evaluate π‘₯ π‘₯ 𝑑π‘₯ ? ? Using π‘₯=3 sinh 𝑒 yields

20 Exercise 4C Unless a substitution is given or asked for, use the standard results. Give numerical answers to 3 sf. 1 Use the substitution π‘₯= atan πœƒ to show that π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 Use the substitution π‘₯= cos πœƒ to show that βˆ’ π‘₯ 2 𝑑π‘₯ =βˆ’ arccos π‘₯ +𝐢 Use suitable substitutions to find 3 4βˆ’ π‘₯ 2 𝑑π‘₯ = π‘₯ 2 βˆ’9 𝑑π‘₯ = 4 5+ π‘₯ 2 𝑑π‘₯ = π‘₯ 𝑑π‘₯ = … 2 3

21 Integrating by Completing the Square
Determine π‘₯ 2 βˆ’8π‘₯+8 𝑑π‘₯ By completing the square, we can then use one of the standard results. = π‘₯ 2 βˆ’8π‘₯+8 𝑑π‘₯ = π‘₯βˆ’4 2 βˆ’8 𝑑π‘₯ Let 𝑒=π‘₯βˆ’4 β†’ 𝑑𝑒=𝑑π‘₯ = 𝑒 2 βˆ’8 𝑑𝑒 = ln π‘’βˆ’ 8 𝑒 𝐢 = ln π‘₯βˆ’4βˆ’2 2 π‘₯βˆ’ 𝐢 ? This is not in the standard form yet, but a simple substitution would make it so. Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = 1 2π‘Ž ln π‘₯βˆ’π‘Ž π‘₯+π‘Ž +𝐢 These can be obtained using C4 techniques: splitting into partial fractions first.

22 Further Example ? Determine 1 12π‘₯+2 π‘₯ 2 𝑑π‘₯
2 π‘₯ 2 +12π‘₯=2 π‘₯ 2 +6π‘₯ =2 π‘₯+3 2 βˆ’9 1 12π‘₯+2 π‘₯ 2 𝑑π‘₯ = π‘₯+3 2 βˆ’9 𝑑π‘₯ = π‘₯+3 2 βˆ’9 𝑑π‘₯ Let 𝑒=π‘₯+3 β†’ 𝑑𝑒=𝑑π‘₯ = 𝑒 2 βˆ’9 𝑑𝑒 = π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž 𝑒 3 +𝐢 = π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ 𝐢 Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = 1 2π‘Ž ln π‘₯βˆ’π‘Ž π‘₯+π‘Ž +𝐢

23 Test Your Understanding
? b ? c

24 Exercise 4D

25 Integration by Parts ? Determine π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯ 𝑑π‘₯
Remember how you found ln π‘₯ 𝑑π‘₯ by expressing as 1Γ— ln π‘₯ 𝑑π‘₯ and using integration by parts? Yeah, do that. Determine π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯ 𝑑π‘₯ ? 𝑒=π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯ 𝑑𝑣 𝑑π‘₯ =1 𝑑𝑒 𝑑π‘₯ = 1 1βˆ’ π‘₯ 𝑣=π‘₯ π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯ 𝑑π‘₯ =π‘₯ arctanh π‘₯ βˆ’ π‘₯ 1βˆ’ π‘₯ 2 𝑑π‘₯ =π‘₯ arctanh π‘₯ ln 1βˆ’ π‘₯ 2 +𝐢 Bro Exam Note: This has never specifically come up in an exam, but could be tested.

26 Test Your Understanding
Determine βˆ’ arcsin π‘₯ 𝑑π‘₯ ? arcsin π‘₯ 𝑑π‘₯ =π‘₯ arcsin π‘₯ + 1βˆ’ π‘₯ 2 +𝐢 βˆ’ arcsin π‘₯ 𝑑π‘₯ =0.279 (3𝑠𝑓)

27 Exercise 4E Show that βˆ«π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯=π‘₯ π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯βˆ’ 1+ π‘₯ 2 +𝐢 Evaluate 0 1 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯, giving your answer to 3sf. Using the substitution 𝑒=2π‘₯+1 and the result in a, or otherwise, find arcsinh 2π‘₯+1 𝑑π‘₯ Show that π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 3π‘₯ 𝑑π‘₯=π‘₯ arctan π‘₯ βˆ’ 1 6 ln 1+9 π‘₯ 2 +𝐢 Show that π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž 𝑑π‘₯ =π‘₯ π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯βˆ’ π‘₯ 2 βˆ’1 +𝐢 Hence show that π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ 𝑑π‘₯= ln βˆ’ 3 Show that π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 𝑑π‘₯=π‘₯ arctan π‘₯ βˆ’ 1 2 ln 1+ π‘₯ 2 +𝐢 Hence show that βˆ’ arctan π‘₯ 𝑑π‘₯ = βˆ’3 πœ‹ 12 βˆ’ 1 2 ln 2 . The curve 𝐢 has equation 𝑦=2 arctan π‘₯ . The region 𝑅 is enclosed by 𝐢, the 𝑦-axis, the line 𝑦=πœ‹ and the line π‘₯=3. Find the area of 𝑅 giving your answer to 3sf. Evaluate a) arcsin π‘₯ 𝑑π‘₯ b) π‘₯ arctan π‘₯ 𝑑π‘₯ Using the result that 𝑦=π‘₯ arcsec π‘₯ , then 𝑑𝑦 𝑑π‘₯ = 1 π‘₯ π‘₯ 2 βˆ’1 , show that arcsec π‘₯ 𝑑π‘₯ =π‘₯ arcsec π‘₯ βˆ’ ln π‘₯+ π‘₯ 2 βˆ’1 +𝐢 1 a b c 2 3 a b 4 a b c 5 6

28 Section C: Arc lengths and surface area Section B: Reduction Formulae
Lengths of a curve. A technique for dealing with large powers in integration. Surface area of volumes of revolution. Using substitutions Use π‘₯=π‘Ž tan πœƒ to find 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Completing the square 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Standard results sinh π‘₯ 𝑑π‘₯ Section A: General Skills By parts 0 1 𝑒 2π‘₯ π‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯

29 Reduction Formulae Integrate π‘₯ 3 𝑒 π‘₯ 𝑑π‘₯ using a tedious and stupid method. ? 𝒖= 𝒙 πŸ‘ 𝒅𝒗 𝒅𝒙 = 𝒆 𝒙 𝒅𝒖 𝒅𝒙 =πŸ‘ 𝒙 𝟐 𝒗= 𝒆 𝒙 𝒙 πŸ‘ 𝒆 𝒙 𝒅𝒙= 𝒙 πŸ‘ 𝒆 𝒙 βˆ’ πŸ‘ 𝒙 𝟐 𝒆 𝒙 𝒅𝒙 We then have to determine πŸ‘ 𝒙 𝟐 𝒆 𝒙 𝒅𝒙. We can see that each time we apply integration by parts we reduce the power of 𝒙 by 1. This obviously becomes hugely tedious if the power was even larger. Ideally we want a way to express an integral with some power 𝑛 in terms of the same expression but with power π‘›βˆ’1. We can then iteratively apply this recurrence more rapidly.

30 Reduction Formulae Given that 𝐼 𝑛 = π‘₯ 𝑛 𝑒 π‘₯ 𝑑π‘₯ where 𝑛 is a positive integer: a) Show that 𝐼 𝑛 = π‘₯ 𝑛 𝑒 π‘₯ βˆ’π‘› 𝐼 π‘›βˆ’1 , 𝑛β‰₯1. b) Find π‘₯ 4 𝑒 π‘₯ 𝑑π‘₯. 𝑒= π‘₯ 𝑛 , 𝑑𝑣 𝑑π‘₯ = 𝑒 π‘₯ 𝑑𝑒 𝑑π‘₯ =𝑛 π‘₯ π‘›βˆ’1 , 𝑣= 𝑒 π‘₯ 𝐼 𝑛 = π‘₯ 𝑛 𝑒 π‘₯ βˆ’ 𝑛 π‘₯ π‘›βˆ’1 𝑒 π‘₯ 𝑑π‘₯ +𝐢 = π‘₯ 𝑛 𝑒 π‘₯ βˆ’π‘› π‘₯ π‘›βˆ’1 𝑒 π‘₯ 𝑑π‘₯+𝐢 = π‘₯ 𝑛 𝑒 π‘₯ βˆ’π‘› 𝐼 π‘›βˆ’1 ? a b ? 𝐼 4 = π‘₯ 4 𝑒 π‘₯ βˆ’4 𝐼 = π‘₯ 4 𝑒 π‘₯ βˆ’4 π‘₯ 3 𝑒 π‘₯ βˆ’3 𝐼 = π‘₯ 4 𝑒 π‘₯ βˆ’4 π‘₯ 3 𝑒 π‘₯ +12 π‘₯ 2 𝑒 π‘₯ βˆ’2 𝐼 = π‘₯ 4 𝑒 π‘₯ βˆ’4 π‘₯ 3 𝑒 π‘₯ +12 π‘₯ 2 𝑒 π‘₯ βˆ’24 π‘₯ 𝑒 π‘₯ βˆ’ 𝐼 = π‘₯ 4 𝑒 π‘₯ βˆ’4 π‘₯ 3 𝑒 π‘₯ +12 π‘₯ 2 𝑒 π‘₯ βˆ’24π‘₯ 𝑒 π‘₯ 𝑒 π‘₯ 𝑑π‘₯ = 𝒙 πŸ’ 𝒆 𝒙 βˆ’πŸ’ 𝒙 πŸ‘ 𝒆 𝒙 +𝟏𝟐 𝒙 𝟐 𝒆 𝒙 βˆ’πŸπŸ’π’™ 𝒆 𝒙 +πŸπŸ’ 𝒆 𝒙 +π‘ͺ

31 Further Example Show that if 𝐼 𝑛 = 0 1 π‘₯ 𝑛 1βˆ’π‘₯ 𝑑π‘₯ then 𝐼 𝑛 = 2𝑛 2𝑛+3 𝐼 π‘›βˆ’1 , 𝑛β‰₯1 𝑒= π‘₯ 𝑛 , 𝑑𝑣 𝑑π‘₯ = 1βˆ’π‘₯ 𝑑𝑒 𝑑π‘₯ =𝑛 π‘₯ π‘›βˆ’1 , 𝑣=βˆ’ βˆ’π‘₯ 3 2 𝐼 𝑛 = βˆ’ 2 3 π‘₯ 𝑛 1βˆ’π‘₯ 𝑛 π‘₯ π‘›βˆ’1 1βˆ’π‘₯ 𝑑π‘₯ = 0βˆ’ 𝑛 0 1 π‘₯ π‘›βˆ’1 1βˆ’π‘₯ = 2 3 𝑛 0 1 π‘₯ π‘›βˆ’1 1βˆ’π‘₯ 1βˆ’π‘₯ 𝑑π‘₯ = 2 3 𝑛 0 1 π‘₯ π‘›βˆ’1 1βˆ’π‘₯ 𝑑π‘₯βˆ’ 2 3 𝑛 0 1 π‘₯ 𝑛 1βˆ’π‘₯ 𝑑π‘₯ 𝐼 𝑛 = 2𝑛 3 𝐼 π‘›βˆ’1 βˆ’ 2𝑛 3 𝐼 𝑛 𝑛 3 𝐼 𝑛 = 2𝑛 3 𝐼 π‘›βˆ’1 𝐼 𝑛 = 2𝑛 2𝑛+3 𝐼 π‘›βˆ’1 ? Since 𝐼 𝑛 contains 1βˆ’π‘₯ , it would seem sensible to write 1βˆ’π‘₯ in terms of this.

32 A Trig Example ? Given that 𝐼 𝑛 = 0 πœ‹ 2 sin 𝑛 π‘₯ 𝑑π‘₯ , 𝑛β‰₯0
Derive the reduction formula: 𝑛 𝐼 𝑛 = π‘›βˆ’1 𝐼 π‘›βˆ’2 , 𝑛β‰₯2 Deduce the values of i) 0 πœ‹ 2 sin 5 π‘₯ 𝑑π‘₯ and 0 πœ‹ 2 sin 6 π‘₯ 𝑑π‘₯ a ? Using integration by parts on sin π‘₯ Γ— sin π‘›βˆ’1 π‘₯ : 𝑒= sin π‘›βˆ’1 π‘₯ 𝑑𝑣 𝑑π‘₯ = sin π‘₯ 𝑑𝑒 𝑑π‘₯ = π‘›βˆ’1 sin π‘›βˆ’2 π‘₯ cos π‘₯ 𝑣=βˆ’ cos π‘₯ 𝐼 𝑛 = βˆ’ sin π‘›βˆ’1 cos π‘₯ πœ‹ πœ‹ 2 π‘›βˆ’1 sin π‘›βˆ’2 π‘₯ cos 2 π‘₯ 𝑑π‘₯ = 0βˆ’0 + π‘›βˆ’1 0 πœ‹ 2 sin π‘›βˆ’2 π‘₯ 1βˆ’ sin 2 π‘₯ 𝑑π‘₯ = π‘›βˆ’1 0 πœ‹ 2 sin π‘›βˆ’2 π‘₯ 𝑑π‘₯ βˆ’ π‘›βˆ’1 0 πœ‹ 2 sin 𝑛 π‘₯ 𝑑π‘₯ 𝐼 𝑛 = π‘›βˆ’1 𝐼 π‘›βˆ’2 βˆ’ π‘›βˆ’1 𝐼 𝑛 𝑛 𝐼 𝑛 = π‘›βˆ’1 𝐼 π‘›βˆ’2 We only want sin so that we can eventually replace with 𝐼 π‘ π‘œπ‘šπ‘’π‘‘β„Žπ‘–π‘›π‘”

33 A Trig Example ? Given that 𝐼 𝑛 = 0 πœ‹ 2 sin 𝑛 π‘₯ 𝑑π‘₯ , 𝑛β‰₯0
Derive the reduction formula: 𝑛 𝐼 𝑛 = π‘›βˆ’1 𝐼 π‘›βˆ’2 , 𝑛β‰₯2 Deduce the values of i) 0 πœ‹ 2 sin 5 π‘₯ 𝑑π‘₯ and 0 πœ‹ 2 sin 6 π‘₯ 𝑑π‘₯ b ? 𝐼 𝑛 = π‘›βˆ’1 𝑛 𝐼 π‘›βˆ’ 𝐼 5 = 4 5 𝐼 3 = 𝐼 1 = πœ‹ 2 sin π‘₯ 𝑑π‘₯ = 8 15 𝐼 6 = 𝐼 4 = 𝐼 2 = 𝐼 0 = πœ‹ = 5πœ‹ 32 Note that sin 0 π‘₯ =1

34 Test Your Understanding
? ?

35 Exercise 4F Given that 𝐼 𝑛 = π‘₯ 𝑛 𝑒 π‘₯ 2 𝑑π‘₯, 1
Show that 𝐼 𝑛 =2 π‘₯ 𝑛 𝑒 π‘₯ 2 βˆ’2𝑛 𝐼 π‘›βˆ’1 , 𝑛β‰₯1 Hence find π‘₯ 3 𝑒 π‘₯ 2 𝑑π‘₯ Given that 𝐼 𝑛 = 1 𝑒 π‘₯ ln π‘₯ 𝑛 𝑑π‘₯ , π‘›βˆˆβ„•, Show that 𝐼 𝑛 = 𝑒 2 2 βˆ’ 𝑛 2 𝐼 π‘›βˆ’2 , π‘›βˆˆβ„• Hence show that 1 𝑒 π‘₯ ln π‘₯ 4 𝑑π‘₯= 𝑒 2 βˆ’3 4 If 𝐼 𝑛 = 0 1 π‘₯ 𝑛 1βˆ’π‘₯ 𝑑π‘₯, then 𝐼 𝑛 = 2𝑛 2𝑛+3 𝐼 π‘›βˆ’1 , 𝑛β‰₯1. Use this reduction formula to evaluate π‘₯+1 π‘₯+2 1βˆ’π‘₯ 𝑑π‘₯ Given that 𝐼 𝑛 = π‘₯ 𝑛 𝑒 βˆ’π‘₯ 𝑑π‘₯ , where 𝑛 is a positive integer, Show that 𝐼 𝑛 =βˆ’ π‘₯ 𝑛 𝑒 βˆ’π‘₯ +𝑛 𝐼 π‘›βˆ’1 , 𝑛β‰₯1 Find π‘₯ 3 𝑒 βˆ’π‘₯ 𝑑π‘₯ Evaluate π‘₯ 4 𝑒 βˆ’π‘₯ 𝑑π‘₯ , giving your answer in terms of 𝑒. 1 2 3 4

36 Exercise 4F 5 𝐼 𝑛 = tanh 𝑛 π‘₯ 𝑑π‘₯ ,
By writing tanh 𝑛 π‘₯ = tanh π‘›βˆ’2 π‘₯ tanh 2 π‘₯ show that for 𝑛β‰₯2, 𝐼 𝑛 = 𝐼 π‘›βˆ’2 βˆ’ 1 π‘›βˆ’1 tanh π‘›βˆ’1 π‘₯ Find tanh 5 π‘₯ 𝑑π‘₯ Show that 0 ln tanh 4 π‘₯ 𝑑π‘₯ = ln 2 βˆ’ Given that tan 𝑛 π‘₯ 𝑑π‘₯ = 1 π‘›βˆ’1 tan π‘›βˆ’1 π‘₯ βˆ’ tan π‘›βˆ’2 π‘₯ 𝑑π‘₯ Find tan 4 π‘₯ 𝑑π‘₯ Evaluate 0 πœ‹ 4 tan 5 π‘₯ 𝑑π‘₯ Show that 0 πœ‹ 3 tan 6 π‘₯ 𝑑π‘₯= βˆ’ πœ‹ 3 Given that 𝐼 𝑛 = 1 π‘Ž ln π‘₯ 𝑛 𝑑π‘₯ , where π‘Ž>1 is a constant, Show that, for 𝑛β‰₯1, 𝐼 𝑛 =π‘Ž ln π‘Ž 𝑛 βˆ’π‘› 𝐼 π‘›βˆ’1 Find the exact value of ln π‘₯ 3 𝑑π‘₯ Show that 1 𝑒 ln π‘₯ 𝑑π‘₯=5 53π‘’βˆ’144 6 7

37 Exercise 4F 8 9 10

38 Section C: Arc lengths and surface area Section B: Reduction Formulae
Lengths of a curve. A technique for dealing with large powers in integration. Surface area of volumes of revolution. Using substitutions Use π‘₯=π‘Ž tan πœƒ to find 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Completing the square 1 9 π‘₯ 2 +6π‘₯+5 𝑑π‘₯ Standard results sinh π‘₯ 𝑑π‘₯ Section A: General Skills By parts 0 1 𝑒 2π‘₯ π‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯

39 Lengths of curves You’re used to adding lots of infinitely small things to get an area or volume. We use 𝛿π‘₯ to denote a small change, which becomes 𝑑π‘₯ as 𝛿π‘₯β†’0. 𝛿π‘₯ 𝑦 π‘Ž 𝑏 π‘₯ 𝛿π‘₯ 𝛿π‘₯ 𝛿π‘₯ 𝛿π‘₯ 𝛿π‘₯ 𝑦 1 𝑦 2 π‘Ž 𝑏 π‘₯ 𝑦 Area of each rectangle: 𝑦×𝛿π‘₯ All rectangles: Σ𝑦 𝛿π‘₯ In limit as 𝛿π‘₯β†’0: 𝑏 π‘Ž 𝑦 𝑑π‘₯ ? Each cylinder volume: πœ‹ 𝑦 2 𝛿π‘₯ In limit as 𝛿π‘₯β†’0: 𝑏 π‘Ž πœ‹ 𝑦 2 𝑑π‘₯ ? ? You also used a similar strategy in FP2 to get the area under a polar curve. ? ?

40 Lengths of curves So what infinitely small things should we add this time for the length of a curve? 𝑦 We add together infinitely small straight lines/chords. We can use Pythagoras to get the length of each line. 𝛿π‘₯ 𝛿𝑦 π‘₯ π‘₯ π‘Ž π‘₯ 𝑏 Each chord has length 𝛿 π‘₯ 2 +𝛿 𝑦 2 , thus summing these up and letting 𝛿π‘₯β†’0: π‘₯ π‘Ž π‘₯ 𝑏 𝑑 π‘₯ 2 +𝑑 𝑦 = π‘₯ π‘Ž π‘₯ 𝑏 𝑑𝑦 𝑑π‘₯ 𝑑π‘₯ We factored 𝑑π‘₯ out so on the end. The above is a tiny bit dodgy because you’d always integrate with respect to something, so the 𝑑π‘₯ should have been on the end to start with. Another way of thinking about it is that integration is the opposite of differentiation. If 𝑠 is the length of the curve so that 𝑑𝑠= 𝑑 π‘₯ 2 +𝑑 𝑦 2 , then we’re integrating 𝑑𝑠 𝑑π‘₯ with respect to π‘₯ to get to 𝑠, i.e. 𝑑𝑠 𝑑π‘₯ 𝑑π‘₯=βˆ«π‘‘π‘  , as we did above.

41 Lengths of curves ! The length 𝑠 of an curve is:
𝑠= π‘₯ π‘Ž π‘₯ 𝑏 𝑑𝑦 𝑑π‘₯ 𝑑π‘₯ Equivalently: 𝑠= 𝑦 π‘Ž 𝑦 𝑏 𝑑π‘₯ 𝑑𝑦 𝑑𝑦 For parametric equations: 𝑠= 𝑑 π‘Ž 𝑑 𝑏 𝑑π‘₯ 𝑑𝑑 + 𝑑𝑦 𝑑𝑑 𝑑𝑑 This is because the 𝑑𝑦 and 𝑑π‘₯ are interchangeable in 𝑑 𝑠 2 =𝑑 π‘₯ 2 +𝑑 𝑦 2 Informally you can see that 𝑑π‘₯ 𝑑𝑑 + 𝑑𝑦 𝑑𝑑 𝑑𝑑 simplifies to 𝑑 π‘₯ 2 +𝑑 𝑦 2 , but more formally, we should use 𝑑𝑠 𝑑𝑑 𝑑𝑑 to prove.

42 Example Find the exact length of the arc on the parabola with equation 𝑦= 1 2 π‘₯ 2 , from the origin to the point 𝑃 4,8 . ? 𝑦= 1 2 π‘₯ 2 β†’ 𝑑𝑦 𝑑π‘₯ =π‘₯ 𝑠= 𝑑𝑦 𝑑π‘₯ 𝑑π‘₯= π‘₯ 2 𝑑π‘₯ As we saw earlier in the chapter, for 1+ π‘₯ 2 we use the substitution π‘₯= sinh 𝑒 𝑑π‘₯ 𝑑𝑒 = cosh 𝑒 β†’ 𝑑π‘₯= cosh 𝑒 𝑑𝑒 π‘₯ 2 𝑑π‘₯= 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž sinh 2 𝑒 cosh 𝑒 𝑑𝑒 = 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž sinh 2 𝑒 cosh 𝑒 𝑑𝑒 = 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 4 cosh 2 𝑒 𝑑𝑒 = 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž cosh 2𝑒 2 𝑑𝑒 Continued on next slide… ?

43 Example Find the exact length of the arc on the parabola with equation 𝑦= 1 2 π‘₯ 2 , from the origin to the point 𝑃 4,8 . = 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 4 cosh 2 𝑒 𝑑𝑒 = 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž cosh 2𝑒 2 𝑑𝑒 = 𝑒 sinh 2𝑒 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 4 = 𝑒 sinh 𝑒 cosh 𝑒 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 4 = 𝑒 sinh 𝑒 sinh 2 𝑒 0 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 4 =…= 1 2 ln ? The point of these two steps is so we can end up with sinh arcsinh … , e.g. sinh arcsinh 4 =4

44 Test Your Understanding
? ?

45 Exercise 4G

46 Fun Fact From Year 7 you know how to find the length of the curve if you have the arc of a circle. We expect πœ‹ 2 for the diagram below, but can we obtain this result using the technique we’ve just learned? π‘₯ 2 + 𝑦 2 =1 𝑦= 1βˆ’ π‘₯ 2 𝑑𝑦 𝑑π‘₯ =βˆ’ π‘₯ 1βˆ’ π‘₯ 2 𝑠= π‘₯ 2 1βˆ’ π‘₯ 𝑑π‘₯ = βˆ’ π‘₯ 𝑑π‘₯ = arcsin π‘₯ = πœ‹ 2 βˆ’0= πœ‹ 2 = ? Only considering positive 𝑦 𝑦 1 π‘₯ 1 Standard results: (in formula booklet) π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž

47 Fun Fact Surprisingly, it is not possible to find the exact length of a general ellipse. π‘₯ 2 π‘Ž 𝑦 2 𝑏 2 =1 𝑦= π‘Ž 2 𝑏 2 βˆ’ 𝑏 2 π‘₯ 2 =𝑏 π‘Ž 2 βˆ’ π‘₯ 2 𝑑𝑦 𝑑π‘₯ = βˆ’π‘π‘₯ π‘Ž 2 βˆ’ π‘₯ 2 𝑠= 𝑏 2 π‘₯ 2 π‘Ž 2 βˆ’ π‘₯ 𝑑π‘₯ And sadly this does not integrate unless π‘Ž=𝑏…  ?

48 Surface Area of Revolution
We saw we could use chords to get the area of a curve. What if we want a slice of the surface area formed by revolving the curve 2πœ‹ around the π‘₯-axis? 𝑦 𝛿𝑠 𝑦 𝑦+𝛿𝑦 π‘₯ π‘Ž 𝑏 It’s the curved surface area of a frustum! 𝑙 2 𝛿𝑠 𝛿π‘₯ 𝑙 1 𝑦+𝛿𝑦 𝑦 𝛿π‘₯

49 Surface Area of Revolution
Recall that πœ‹π‘Ÿπ‘™ is the curved surface area of a cone, where 𝑙 is the slant height. If 𝑆 is the total surface area we have: 𝛿𝑆=πœ‹ 𝑦+𝛿𝑦 𝑙 2 βˆ’πœ‹π‘¦ 𝑙 =πœ‹π‘¦ 𝑙 2 βˆ’ 𝑙 1 +πœ‹ 𝑙 2 𝛿𝑦 =πœ‹π‘¦π›Ώπ‘ +πœ‹ 𝑙 2 𝛿𝑦 But we don’t want the 𝑙 2 in our expression; we can eliminate using similar triangles: 𝑙 2 𝑙 1 = 𝑦+𝛿𝑦 𝑦 𝑙 2 𝑙 2 βˆ’π›Ώπ‘  = 𝑦+𝛿𝑦 𝑦 𝑙 2 = 𝛿𝑠 𝑦+𝛿𝑦 𝛿𝑦 βˆ΄π›Ώπ‘†=πœ‹π‘¦π›Ώπ‘ +πœ‹ 𝛿𝑠 𝑦+𝛿𝑦 𝛿𝑦 𝛿𝑦 𝛿𝑆=πœ‹ 2𝑦+𝛿𝑦 𝛿𝑠 𝛿𝑆 𝛿π‘₯ =πœ‹ 2𝑦+𝛿𝑦 𝛿𝑠 𝛿π‘₯ 𝑙 2 𝛿𝑠 𝑙 1 𝑦+𝛿𝑦 𝑦 𝛿π‘₯ As 𝛿π‘₯β†’0, 𝛿𝑦→0 We get 𝛿𝑆 𝛿π‘₯ β†’ 𝑑𝑆 𝑑π‘₯ and 𝛿𝑠 𝛿π‘₯ β†’ 𝑑𝑠 𝑑π‘₯ ∴ 𝑑𝑆 𝑑π‘₯ =2πœ‹π‘¦ 𝑑𝑠 𝑑π‘₯ Integrating both sides w.r.t π‘₯: 𝑆=∫2πœ‹π‘¦ 𝑑𝑠 𝑑π‘₯ 𝑑π‘₯ =∫2πœ‹π‘¦ 𝑑𝑠 We want 𝛿𝑆 𝛿π‘₯ because we’re later finding 𝑑𝑆 𝑑π‘₯ 𝑑π‘₯

50 Surface Area of Revolution
𝑆=∫2πœ‹π‘¦ 𝑑𝑠 𝑑π‘₯ 𝑑π‘₯ We found earlier that 𝑑𝑠 𝑑π‘₯ = 𝑑𝑦 𝑑π‘₯ or 𝑑π‘₯ 𝑑𝑑 𝑑𝑦 𝑑𝑑 2 We therefore get the following formulae (from the formula booklet):

51 Example The curve 𝐢 has equation 𝑦= π‘₯ 3βˆ’π‘₯ . The arc of the curve between the points with π‘₯-coordinates 1 and 3 is completely rotated about the π‘₯-axis. Find the area of the surface generated. 𝑦= π‘₯ βˆ’ 1 3 π‘₯ β‡’ 𝑑𝑦 𝑑π‘₯ = π‘₯ βˆ’ 1 2 βˆ’ π‘₯ 1 2 So 1+ 𝑑𝑦 𝑑π‘₯ 2 =…= π‘₯ βˆ’ π‘₯ Therefore 𝑆=2πœ‹ π‘₯ βˆ’ 1 3 π‘₯ π‘₯ βˆ’ π‘₯ 𝑑π‘₯ =… = 16 9 πœ‹ ! Key strategy: Since 𝑑π‘₯ 𝑑𝑑 𝑑𝑦 𝑑𝑑 2 , we wish to end ?

52 Further Example The curve with parametric equations π‘₯=π‘‘βˆ’ sin 𝑑 , 𝑦=1βˆ’ cos 𝑑 , from 𝑑=0 to 𝑑=2πœ‹, is rotated through 360Β° about the π‘₯-axis. Find the area of the curve generated. Because we’re about to square root this expression, we’d ideally like it as a single term. The trick for 1βˆ’ cos 𝑑 is to use a half-angle formula: cos 2𝑑 =1βˆ’2 sin 2 𝑑 ∴ cos 𝑑 =1βˆ’2 sin 2 𝑑 2 𝑑π‘₯ 𝑑𝑑 =1βˆ’ cos 𝑑 , 𝑑𝑦 𝑑𝑑 = sin 𝑑 𝑑π‘₯ 𝑑𝑑 𝑑𝑦 𝑑𝑑 2 =…=2βˆ’2 cos 𝑑 =4 sin 2 𝑑 2 𝑆=2πœ‹ 0 2πœ‹ 1βˆ’ cos 𝑑 2 sin 𝑑 2 𝑑𝑑 =2πœ‹ 0 2πœ‹ 2 sin 2 𝑑 sin 𝑑 𝑑𝑑 =2πœ‹ 0 2πœ‹ 4 sin 3 𝑑 𝑑𝑑 =8πœ‹ 0 2πœ‹ sin 𝑑 βˆ’ cos 2 𝑑 𝑑𝑑 =8πœ‹ 0 2πœ‹ sin 𝑑 2 βˆ’ sin 𝑑 cos 2 𝑑 2 𝑑𝑑 =8πœ‹ βˆ’2 cos 𝑑 2 βˆ’ cos 3 𝑑 πœ‹ =…= 64 3 πœ‹ ? ? ? ? In general you can integrate sin 3 π‘₯ and cos 3 π‘₯ by splitting and using sin 2 π‘₯ + cos 2 π‘₯ ≑1. We saw this earlier in the chapter. ? sin 2 𝑑 2 = βˆ’ cos 𝑑 Use to get 1βˆ’ cos 𝑑 as a single term. ? ? ? ? ? ?

53 Test Your Understanding
? ?

54 Exercise 4H

55 Summary cheat sheet ? ? ? ? ? ? ? ? ? ? ? ? ? 𝒇(𝒙) 𝒇 𝒙 𝒅𝒙
Strategy/Notes FmBk? sinh π‘₯ cosh π‘₯ +𝐢 Use definition of sinh π‘₯ Yes cosh π‘₯ sinh π‘₯ +𝐢 tanh π‘₯ ln cosh π‘₯ +𝐢 sech 2 π‘₯ tanh π‘₯ +𝐢 (Same as non-hyp) No π‘π‘œπ‘ π‘’π‘ β„Ž 2 π‘₯ βˆ’ coth π‘₯ +𝐢 sech π‘₯ tanh π‘₯ βˆ’ sech π‘₯ +𝐢 (NOT same as non-hyp) π‘π‘œπ‘ π‘’π‘β„Ž π‘₯ coth π‘₯ βˆ’π‘π‘œπ‘ π‘’π‘β„Ž π‘₯+𝐢 1 π‘Ž 2 βˆ’ π‘₯ 2 arcsin π‘₯ π‘Ž Substitution π‘₯=π‘Ž sin πœƒ or π‘₯=π‘Ž tanh 𝑒 1 π‘Ž 2 + π‘₯ 2 1 π‘Ž arctan π‘₯ π‘Ž π‘₯=π‘Ž sinh 𝑒 1 π‘Ž 2 + π‘₯ 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ π‘Ž 1 π‘₯ 2 βˆ’ π‘Ž 2 π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘Ž +𝐢 π‘₯=π‘Ž cosh 𝑒 1 π‘Ž 2 βˆ’ π‘₯ 2 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝐢 Partial Fractions 1 π‘₯ 2 βˆ’ π‘Ž 2 1 2π‘Ž ln π‘₯βˆ’π‘Ž π‘₯+π‘Ž +𝐢 ? ? ? ? ? ? ? ? ? ? ? ? ?

56 Summary cheat sheet ? ? ? ? ? ? ? 𝒇(𝒙) 𝒇 𝒙 𝒅𝒙 Strategy/Notes FmBk?
sinβ„Ž 2 π‘₯ 1 4 π‘ π‘–π‘›β„Ž 2π‘₯βˆ’ 1 2 π‘₯+𝐢 Double angle formula for cosh 2π‘₯ . No tanh 2 π‘₯ π‘₯βˆ’ tanh π‘₯ +𝐢 1+ tanh 2 π‘₯ ≑ sech 2 π‘₯ sech π‘₯ 2 arctan 𝑒 π‘₯ +𝐢 sech π‘₯ ≑ 1 cosh π‘₯ ≑ 2 𝑒 π‘₯ 𝑒 2π‘₯ +1 Then use 𝑒= 𝑒 π‘₯ . 𝑒 π‘₯ sinh π‘₯ 1 4 𝑒 2π‘₯ βˆ’2π‘₯ +𝐢 Do NOT use parts. Use def of sinh π‘₯ . 1βˆ’ cos π‘₯ βˆ’2 2 cos π‘₯ +𝐢 cos π‘₯ ≑1βˆ’2 sin π‘₯ sin 3 π‘₯ βˆ’ cos π‘₯ cos 3 π‘₯ +𝐢 sin 3 π‘₯ ≑ sin π‘₯ sin 2 π‘₯ ≑ sin π‘₯ 1βˆ’ cos 2 π‘₯ ≑ sin π‘₯ βˆ’ sin π‘₯ cos 2 π‘₯ 1+ π‘₯ 2 1 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+ 1 2 π‘₯ 1+ π‘₯ 2 +𝐢 Substitution π‘₯= sinh 𝑒 ? ? ? ? ? ? ?


Download ppt "FP3 Chapter 4 Integration"

Similar presentations


Ads by Google