Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nuclear Reactions.

Similar presentations


Presentation on theme: "Nuclear Reactions."— Presentation transcript:

1 Nuclear Reactions

2 Nuclear Reactions When an atom is stable, the strong force in the nuclei is able to keep the nucleus permanently together.

3 Nuclear Reactions Radioactivity-
However, when the strong force is not large enough to hold a nucleus together tightly, the nucleus can decay and give off matter and energy. The process of nuclear decay is called radioactivity.

4 NUCLEAR FISSION AND FUSION

5 Nuclear Reactions Nuclear Fission-
The process of splitting a nucleus into 2 nuclei with smaller masses. Fission means to “divide”. Only the elements Uranium and Plutonium may undergo nuclear fission. Nuclear fission is similar to the game of pool.

6 Nuclear Reactions

7 Nuclear Reactions

8 Nuclear Reactions A chain reaction is an ongoing series of fission reactions. Billions of reactions may occur each second resulting in the release of tremendous energy.

9 Nuclear Reactions This chain reaction led to the formation of the Atomic bomb.

10 Nuclear Reactions

11 Nuclear Reactions

12 Nuclear Reactions

13 Nuclear Reactions

14 Nuclear Reactions

15 Nuclear Reactions

16

17 Nuclear Reactions Nuclear Fusion-
2 nuclei with low masses are combined to form one nucleus of larger mass. Hot temperature is required. Fusion fuses atomic nuclei together, and fission splits nuclei apart. Occurs mostly in the sun and stars. Occurs in Hydrogen bomb

18 Nuclear Reactions

19 Nuclear Reactions

20 Nuclear Reactions

21 Nuclear Reactions

22 Nuclear Reactions

23 Nuclear Reactions

24 Nuclear Reactions Nuclear reactions have advantages and disadvantages.
-Tracers in medicine -Treatment of cancer -Energy production -Environmentally safe*

25 Nuclear Reactions Nuclear Reactions in Medicine-
If you were going to meet a friend in a crowded public area, you might tell them to wear a red hat. Scientist use this technique to mark an atom in a large group of atoms. They place a radioactive atom in it to be found more easily. This atom is called a tracer.

26 Nuclear Reactions Tracers follow where a particular molecule goes in your body or to study how a particular organ functions. Examples: Iodine tracers in the thyroid

27 Nuclear Reactions

28 Nuclear Reactions Treating cancer with radioactivity is another example of using nuclear radiation in medicine.

29 Nuclear Reactions

30 Nuclear Reactions Nuclear Energy-
Nuclear power plants generate electricity using the energy release in nuclear fission. The reactor core in an energy plant produces the equivalent energy released in 3 million kg of coal. An advantage of nuclear energy is that it is environmental friendly since it does not require the burning of fossil fuels.

31 Nuclear Reactions

32 Nuclear Reactions Disadvantages- -Nuclear waste
-Risk of release of radioactivity -Nuclear weapons

33 Nuclear Reactions A disadvantage of nuclear energy is nuclear waste. Nuclear waste is any radioactive by-product that results when radioactive materials are used. Another disadvantage is the risk of the release of radioactivity (1986 Chernobyl, Ukraine).

34 Nuclear Reactions Chernobyl-
On April 26, 1986, the fourth reactor of the Chernobyl Nuclear Power Plant exploded at 01:23 AM local time which had caused the biggest nuclear disaster in history of the mankind.

35 Nuclear Reactions

36 Nuclear Reactions

37 Nuclear Reactions

38 Nuclear Reactions

39 Nuclear Reactions

40 Nuclear Reactions

41 Nuclear Reactions

42 Nuclear Reactions

43 Nuclear Reactions

44 Nuclear Reactions Radioactive decay is when an unstable nucleus spontaneously disintegrates into a smaller, more stable nucleus. Radioactive decay releases energy and nuclear radiation.

45 Nuclear Reactions Alpha emission (α)
Alpha emission results when a very heavy nucleus emits 2 protons and 2 neutrons (Helium) at the same time. 2. An alpha particle is represented by the symbol: Ex:

46 Nuclear Reactions

47 Nuclear Reactions Beta emission (β-)
Beta emission results when a nucleus converts a neutron into a proton and an electron, then emits the electron from the nucleus. 2. A beta particle is represented by the symbol:

48 Nuclear Reactions Beta emission (β-)

49 Nuclear Reactions

50 Nuclear Reactions Positron emission (β+)
1. Positron emission results when a nucleus converts a proton into a neutron and emits a positron from the nucleus. 2. A positron has the same mass as an electron, but has a positive charge. 3. A positron is represented by the symbol: Ex:

51 Nuclear Reactions Positron emission (β+)

52 Nuclear Reactions

53 Nuclear Reactions Electron capture (e-)
1. Electron capture is when a nucleus captures an electron, combines it with a proton, and forms a neutron. 2. An electron (e-) is represented by the symbol: Ex:

54 Nuclear Reactions

55 Nuclear Reactions Gamma emission (γ)
1. Gamma rays are high energy waves emitted from the nucleus immediately following other types of decay.

56 Nuclear Reactions

57 Nuclear Reactions A measure of the time required by the nuclei of an isotope to decay is called the half-life. The half-life of a radioactive isotope is the amount of time it takes for half the nuclei in a sample of the isotope to decay. Example- carbon-14 dating

58 Nuclear Reactions


Download ppt "Nuclear Reactions."

Similar presentations


Ads by Google