Download presentation
Presentation is loading. Please wait.
1
Market Risk VaR: Model-Building Approach
Chapter 15 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
2
The Model-Building Approach
The main alternative to historical simulation is to make assumptions about the probability distributions of the returns on the market variables This is known as the model building approach (or sometimes the variance-covariance approach) Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
3
Microsoft Example (page 323-324)
We have a position worth $10 million in Microsoft shares The volatility of Microsoft is 2% per day (about 32% per year) We use N=10 and X=99 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
4
Microsoft Example continued
The standard deviation of the change in the portfolio in 1 day is $200,000 The standard deviation of the change in 10 days is Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
5
Microsoft Example continued
We assume that the expected change in the value of the portfolio is zero (This is OK for short time periods) We assume that the change in the value of the portfolio is normally distributed Since N(–2.33)=0.01, the VaR is Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
6
AT&T Example Consider a position of $5 million in AT&T
The daily volatility of AT&T is 1% (approx 16% per year) The SD per 10 days is The VaR is Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
7
Portfolio (page 325) Now consider a portfolio consisting of both Microsoft and AT&T Suppose that the correlation between the returns is 0.3 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
8
S.D. of Portfolio A standard result in statistics states that
In this case sX = 200,000 and sY = 50,000 and r = 0.3. The standard deviation of the change in the portfolio value in one day is therefore 220,227 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
9
VaR for Portfolio The 10-day 99% VaR for the portfolio is
The benefits of diversification are (1,473, ,405)–1,622,657=$219,369 What is the incremental effect of the AT&T holding on VaR? Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
10
The Linear Model We assume
The daily change in the value of a portfolio is linearly related to the daily returns from market variables The returns from the market variables are normally distributed Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
11
Markowitz Result for Variance of Return on Portfolio
Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
12
Corresponding Result for Variance of Portfolio Value
si is the daily volatility of the ith asset (i.e., SD of daily returns) sP is the SD of the change in the portfolio value per day ai =wi P is amount invested in ith asset Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
13
Covariance Matrix (vari = covii) (page 328)
Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
14
Alternative Expressions for sP2 page 328
Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
15
Four Index Example Using Last 500 Days of Data to Estimate Covariances
Equal Weight EWMA : l=0.94 One-day 99% VaR $217,757 $471,025 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
16
Volatilities and Correlations Increased in Sept 2008
Volatilities (% per day) DJIA FTSE CAC Nikkei Equal Weights 1.11 1.42 1.40 1.38 EWMA 2.19 3.21 3.09 1.59 Correlations Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
17
Alternatives for Handling Interest Rates
Duration approach: Linear relation between DP and Dy but assumes parallel shifts) Cash flow mapping: Variables are zero-coupon bond prices with about 10 different maturities Principal components analysis: 2 or 3 independent shifts with their own volatilities Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
18
Handling Interest Rates: Cash Flow Mapping (page 330-333)
We choose as market variables zero-coupon bond prices with standard maturities (1mm, 3mm, 6mm, 1yr, 2yr, 5yr, 7yr, 10yr, 30yr) Suppose that the 5yr rate is 6% and the 7yr rate is 7% and we will receive a cash flow of $10,000 in 6.5 years. The volatilities per day of the 5yr and 7yr bonds are 0.50% and 0.58% respectively Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
19
Example continued We interpolate between the 5yr rate of 6% and the 7yr rate of 7% to get a 6.5yr rate of 6.75% The PV of the $10,000 cash flow is Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
20
Example continued We interpolate between the 0.5% volatility for the 5yr bond price and the 0.58% volatility for the 7yr bond price to get 0.56% as the volatility for the 6.5yr bond We allocate a of the PV to the 5yr bond and (1- a) of the PV to the 7yr bond Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
21
Example continued Suppose that the correlation between movement in the 5yr and 7yr bond prices is 0.6 To match variances This gives a=0.074 Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
22
Example continued The value of 6,540 received in 6.5 years
in 5 years and by in 7 years. This cash flow mapping preserves value and variance Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
23
Using a PCA to Calculate VaR (page 333 to 334)
Suppose we calculate where f1 is the first factor and f2 is the second factor If the SD of the factor scores are and 4.77 the SD of DP is Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
24
When Linear Model Can be Used
Portfolio of stocks Portfolio of bonds Forward contract on foreign currency Interest-rate swap Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
25
The Linear Model and Options
Consider a portfolio of options dependent on a single stock price, S. Define and Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
26
Linear Model and Options continued
As an approximation Similarly when there are many underlying market variables where di is the delta of the portfolio with respect to the ith asset Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
27
Example Consider an investment in options on Microsoft and AT&T. Suppose the stock prices are 120 and 30 respectively and the deltas of the portfolio with respect to the two stock prices are 1,000 and 20,000 respectively As an approximation where Dx1 and Dx2 are the percentage changes in the two stock prices Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
28
But the Distribution of the Daily Return on an Option is not Normal
The linear model fails to capture skewness in the probability distribution of the portfolio value. Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
29
Impact of Gamma (See Figure 15.1, page 337)
Negative Gamma Positive Gamma Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
30
Translation of Asset Price Change to Price Change for Long Call (Figure 15.2, page 337)
Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
31
Translation of Asset Price Change to Price Change for Short Call (Figure 15.3, page 338)
Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
32
Quadratic Model (page 338-340)
For a portfolio dependent on a single asset price it is approximately true that so that Moments are Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
33
Quadratic Model continued
When there are a small number of underlying market variable moments can be calculated analytically from the delta/gamma approximation The Cornish –Fisher expansion can then be used to convert moments to fractiles However when the number of market variables becomes large this is no longer feasible Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
34
Monte Carlo Simulation (page 340-341)
To calculate VaR using MC simulation we Value portfolio today Sample once from the multivariate distributions of the Dxi Use the Dxi to determine market variables at end of one day Revalue the portfolio at the end of day Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
35
Monte Carlo Simulation continued
Calculate DP Repeat many times to build up a probability distribution for DP VaR is the appropriate fractile of the distribution times square root of N For example, with 1,000 trial the 1 percentile is the 10th worst case. Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
36
Speeding up Calculations with the Partial Simulation Approach
Use the approximate delta/gamma relationship between DP and the Dxi to calculate the change in value of the portfolio This is also a way of speeding up computations in the historical simulation approach Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
37
Alternative to Normal Distribution Assumption in Monte Carlo
In a Monte Carlo simulation we can assume non-normal distributions for the xi (e.g., a multivariate t-distribution) Can also use a Gaussian or other copula model in conjunction with empirical distributions Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
38
Model Building vs Historical Simulation
Model building approach can be used for investment portfolios where there are no derivatives, but it does not usually work when for portfolios where There are derivatives Positions are close to delta neutral Risk Management and Financial Institutions 3e, Chapter 15, Copyright © John C. Hull 2012
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.