Presentation is loading. Please wait.

Presentation is loading. Please wait.

Capacity and Constraint Management

Similar presentations


Presentation on theme: "Capacity and Constraint Management"— Presentation transcript:

1 Capacity and Constraint Management
PowerPoint presentation to accompany Heizer and Render Operations Management, 10e Principles of Operations Management, 8e PowerPoint slides by Jeff Heyl © 2011 Pearson Education, Inc. publishing as Prentice Hall

2 Process Strategies The objective of a process strategy is to build a production process that meets customer requirements and product specifications within cost and other managerial constraints © 2011 Pearson Education, Inc. publishing as Prentice Hall

3 Capacity The throughput, or the number of units a facility can hold, receive, store, or produce in a period of time Determines fixed costs Determines if demand will be satisfied Three time horizons After selection of a production process ( Chapter 7 ), managers need to determine capacity. Capacity is the “throughput,” or the number of units a facility can hold, receive, store, or produce in a given time. Capacity decisions often determine capital requirements and therefore a large portion of fixed cost. Capacity also determines whether demand will be satisfied or whether facilities will be idle. If a facility is too large, portions of it will sit unused and add cost to existing production. If a facility is too small, customers—and perhaps entire markets—will be lost. Determining facility size, with an objective of achieving high levels of utilization and a high return on investment, is critical. © 2011 Pearson Education, Inc. publishing as Prentice Hall

4 Planning Over a Time Horizon
Modify capacity Use capacity Intermediate-range planning Subcontract Add personnel Add equipment Build or use inventory Add shifts Short-range planning Schedule jobs Schedule personnel Allocate machinery * Long-range planning Add facilities Add long lead time equipment * Difficult to adjust capacity as limited options exist Options for Adjusting Capacity Capacity planning can be viewed in three time horizons. Figure S7.1 © 2011 Pearson Education, Inc. publishing as Prentice Hall

5 Design and Effective Capacity
Design capacity is the maximum theoretical output of a system Normally expressed as a rate Effective capacity is the capacity a firm expects to achieve given current operating constraints Often lower than design capacity Design capacity is the maximum theoretical output of a system in a given period under ideal conditions. It is normally expressed as a rate, such as the number of tons of steel that can be produced per week, per month, or per year. For many companies, measuring capacity can be straightforward: it is the maximum number of units the company is capable of producing in a specific time. However, for some organizations, determining capacity can be more difficult. Effective capacity is the capacity a firm expects to achieve given the current operating constraints. Effective capacity is often lower than design capacity because the facility may have been designed for an earlier version of the product or a different product mix than is currently being produced. Table S7.1 further illustrates the relationship between design capacity, effective capacity, and actual output. © 2011 Pearson Education, Inc. publishing as Prentice Hall

6 Utilization and Efficiency
Utilization is the percent of design capacity achieved Utilization = Actual output/Design capacity Efficiency is the percent of effective capacity achieved Two measures of system performance are particularly useful: utilization and efficiency. Utilization is simply the percent of design capacity actually achieved. Efficiency is the percent of effective capacity actually achieved. Depending on how facilities are used and managed, it may be difficult or impossible to reach 100% efficiency. Operations managers tend to be evaluated on efficiency. The key to improving efficiency is often found in correcting quality problems and in effective scheduling, training, and maintenance. Efficiency = Actual output/Effective capacity © 2011 Pearson Education, Inc. publishing as Prentice Hall

7 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls Sara James Bakery has a plant for processing Deluxe breakfast rolls and wants to better understand its capability. Last week the facility produced 148,000 rolls. The effective capacity is 175,000 rolls. The production line operates 7 days per week, with three 8-hour shifts per day. The line was designed to process the nut-filled, cinnamon-flavored Deluxe roll at a rate of 1,200 per hour. Determine the design capacity, utilization, and efficiency for this plant when producing this Deluxe roll. © 2011 Pearson Education, Inc. publishing as Prentice Hall

8 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls © 2011 Pearson Education, Inc. publishing as Prentice Hall

9 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls Utilization = 148,000/201,600 = 73.4% © 2011 Pearson Education, Inc. publishing as Prentice Hall

10 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls Utilization = 148,000/201,600 = 73.4% © 2011 Pearson Education, Inc. publishing as Prentice Hall

11 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls Utilization = 148,000/201,600 = 73.4% Efficiency = 148,000/175,000 = 84.6% © 2011 Pearson Education, Inc. publishing as Prentice Hall

12 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Design capacity = (7 x 3 x 8) x (1,200) = 201,600 rolls I Utilization = 148,000/201,600 = 73.4% Efficiency = 148,000/175,000 = 84.6% © 2011 Pearson Education, Inc. publishing as Prentice Hall

13 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Efficiency = 84.6% Efficiency of new line = 75% Expected Output = (Effective Capacity)(Efficiency) = (175,000)(.75) = 131,250 rolls © 2011 Pearson Education, Inc. publishing as Prentice Hall

14 Bakery Example Actual production last week = 148,000 rolls
Effective capacity = 175,000 rolls Design capacity = 1,200 rolls per hour Bakery operates 7 days/week, hour shifts Efficiency = 84.6% Efficiency of new line = 75% Expected Output = (Effective Capacity)(Efficiency) = (175,000)(.75) = 131,250 rolls © 2011 Pearson Education, Inc. publishing as Prentice Hall

15 Capacity Considerations
Forecast demand accurately Understand the technology and capacity increments Find the optimum operating level (volume) Build for change 1. Forecast demand accurately: Product additions and deletions, competition actions, product life cycle, and unknown sales volumes all add challenge to accurate forecasting. 2. Match technology increments and sales volume: Capacity options are often constrained by technology. Some capacity increments may be large (e.g., steel mills or power plants), while others may be small (hand-crafted Louis Vuitton handbags). Large capacity increments complicate the difficult but necessary job of matching capacity to sales. 3. Find the optimum operating size (volume): Economies and diseconomies of scale often dictate an optimal size for a facility. Economies of scale exist when average cost declines as size increases, whereas diseconomies of scale occur when a larger size raises the average cost. 4. Build for change: Managers build flexibility into facilities and equipment; changes will occur in processes, as well as products, product volume, and product mix. © 2011 Pearson Education, Inc. publishing as Prentice Hall

16 Economies and Diseconomies of Scale
Number of Rooms 25 50 75 (dollars per room per night) Average unit cost 25 - room roadside motel 75 - room roadside motel 50 - room roadside motel Economies and diseconomies of scale often dictate an optimal size for a facility. Economies of scale exist when average cost declines as size increases, whereas diseconomies of scale occur when a larger size raises the average cost. As Figure S7.2 suggests, most businesses have an optimal size—at least until someone comes along with a new business model. For decades, very large integrated steel mills were considered optimal. Economies of scale Diseconomies of scale Figure S7.2 © 2011 Pearson Education, Inc. publishing as Prentice Hall

17 Managing Demand Demand exceeds capacity Capacity exceeds demand
Curtail demand by raising prices, scheduling longer lead time Long term solution is to increase capacity Capacity exceeds demand Stimulate market Product changes Adjusting to seasonal demands Produce products with complementary demand patterns Even with good forecasting and facilities built to accomodate that forecast, there may be a poor match between the actual demand that occurs and available capacity. A poor match may mean demand exceeds capacity or capacity exceeds demand. However, in both cases, firms have options. © 2011 Pearson Education, Inc. publishing as Prentice Hall

18 Complementary Demand Patterns
4,000 – 3,000 – 2,000 – 1,000 – J F M A M J J A S O N D J F M A M J J A S O N D J Sales in units Time (months) Jet ski engine sales Figure S7.3 © 2011 Pearson Education, Inc. publishing as Prentice Hall

19 Complementary Demand Patterns
4,000 – 3,000 – 2,000 – 1,000 – J F M A M J J A S O N D J F M A M J J A S O N D J Sales in units Time (months) Snowmobile motor sales Jet ski engine sales Figure S7.3 © 2011 Pearson Education, Inc. publishing as Prentice Hall

20 Complementary Demand Patterns
Combining both demand patterns reduces the variation 4,000 – 3,000 – 2,000 – 1,000 – J F M A M J J A S O N D J F M A M J J A S O N D J Sales in units Time (months) Snowmobile motor sales Jet ski engine sales Adjusting to Seasonal Demands A seasonal or cyclical pattern of demand is another capacity challenge. In such cases, management may find it helpful to offer products with complementary demand patterns—that is, products for which the demand is high for one when low for the other. For example, in Figure S7.3 the firm is adding a line of snowmobile motors to its line of jet skis to smooth demand. Figure S7.3 © 2011 Pearson Education, Inc. publishing as Prentice Hall

21 Tactics for Matching Capacity to Demand
Making staffing changes Adjusting equipment Purchasing additional machinery Selling or leasing out existing equipment Improving processes to increase throughput Redesigning products to facilitate more throughput Adding process flexibility to meet changing product preferences Closing facilities © 2011 Pearson Education, Inc. publishing as Prentice Hall

22 Demand and Capacity Management in the Service Sector
Demand management Appointment, reservations, FCFS rule Capacity management Full time, temporary, part-time staff Demand Management: When demand and capacity are fairly well matched, demand management can often be handled with appointments, reservations, or a first-come, firstserved rule. In some businesses, such as doctors’ and lawyers’ offices, an appointment system is the schedule and is adequate. Reservations systems work well in rental car agencies, hotels, and some restaurants as a means of minimizing customer waiting time and avoiding disappointment over unfilled service. In retail shops, a post office, or a fast-food restaurant, a first-come, first-served rule for serving customers may suffice. Capacity Management When managing demand is not feasible, then managing capacity through changes in full-time, temporary, or part-time staff may be an option. This is the approach in many services. For instance, hospitals may find capacity limited by a shortage of board-certified radiologists willing to cover the graveyard shifts. Getting fast and reliable radiology readings can be the difference between life and death for an emergency room patient. © 2011 Pearson Education, Inc. publishing as Prentice Hall

23 Break-Even Analysis Technique for evaluating process and equipment alternatives Objective is to find the point in dollars and units at which cost equals revenue Requires estimation of fixed costs, variable costs, and revenue Break-even analysis is the critical tool for determining the capacity a facility must have to achieve profitability. The objective of break-even analysis is to find the point, in dollars and units, at which costs equal revenue. This point is the break-even point. Firms must operate above this level to achieve profitability. © 2011 Pearson Education, Inc. publishing as Prentice Hall

24 Break-Even Analysis Fixed costs are costs that continue even if no units are produced Depreciation, taxes, debt, mortgage payments Variable costs are costs that vary with the volume of units produced Labor, materials, portion of utilities Contribution is the difference between selling price and variable cost Break-even analysis is the critical tool for determining the capacity a facility must have to achieve profitability. The objective of break-even analysis is to find the point, in dollars and units, at which costs equal revenue. This point is the break-even point. Firms must operate above this level to achieve profitability. © 2011 Pearson Education, Inc. publishing as Prentice Hall

25 Break-Even Analysis Assumptions Costs and revenue are linear functions
Generally not the case in the real world We actually know these costs Very difficult to verify Time value of money is often ignored © 2011 Pearson Education, Inc. publishing as Prentice Hall

26 Total cost = Total revenue
Break-Even Analysis 900 – 800 – 700 – 600 – 500 – 400 – 300 – 200 – 100 – | | | | | | | | | | | | Cost in dollars Volume (units per period) Total revenue line Profit corridor Loss corridor Total cost line Break-even point Total cost = Total revenue Variable cost Another element in break-even analysis is the revenue function . In Figure S7.5 , revenue begins at the origin and proceeds upward to the right, increasing by the selling price of each unit. Where the revenue function crosses the total cost line (the sum of fixed and variable costs) is the break-even point, with a profit corridor to the right and a loss corridor to the left. Fixed cost Figure S7.5 © 2011 Pearson Education, Inc. publishing as Prentice Hall

27 Break-Even Analysis TR = TC F or BEPx = P - V Px = F + Vx
BEPx = break-even point in units BEP$ = break-even point in dollars P = price per unit (after all discounts) x = number of units produced TR = total revenue = Px F = fixed costs V = variable cost per unit TC = total costs = F + Vx Break-even point occurs when TR = TC or Px = F + Vx BEPx = F P - V © 2011 Pearson Education, Inc. publishing as Prentice Hall

28 Break-Even Analysis BEP$ = BEPx P = P = Profit = TR - TC P - V
BEPx = break-even point in units BEP$ = break-even point in dollars P = price per unit (after all discounts) x = number of units produced TR = total revenue = Px F = fixed costs V = variable cost per unit TC = total costs = F + Vx BEP$ = BEPx P = P = F (P - V)/P P - V 1 - V/P Profit = TR - TC = Px - (F + Vx) = Px - F - Vx = (P - V)x - F © 2011 Pearson Education, Inc. publishing as Prentice Hall

29 Break-Even Example Fixed costs = $10,000 Material = $.75/unit
Direct labor = $1.50/unit Selling price = $4.00 per unit BEP$ = = F 1 - (V/P) $10,000 1 - [( )/(4.00)] © 2011 Pearson Education, Inc. publishing as Prentice Hall

30 Break-Even Example Fixed costs = $10,000 Material = $.75/unit
Direct labor = $1.50/unit Selling price = $4.00 per unit BEP$ = = F 1 - (V/P) $10,000 1 - [( )/(4.00)] = = $22,857.14 $10,000 .4375 Stephens, Inc., wants to determine the minimum dollar volume and unit volume needed at its new facility to break even. BEPx = = = 5,714 F P - V $10,000 ( ) © 2011 Pearson Education, Inc. publishing as Prentice Hall

31 Break-Even Example Revenue Break-even point Total costs Fixed costs
50,000 – 40,000 – 30,000 – 20,000 – 10,000 – | | | | | | 0 2,000 4,000 6,000 8,000 10,000 Dollars Units Revenue Break-even point Total costs Fixed costs © 2011 Pearson Education, Inc. publishing as Prentice Hall

32 ∑ 1 - x (Wi) Break-Even Example Multiproduct Case F BEP$ = Vi Pi
Most firms, from manufacturers to restaurants, have a variety of offerings. Each offering may have a different selling price and variable cost. Utilizing break-even analysis, we modify Equation (S7-4) to reflect the proportion of sales for each product. We do this by “weighting” each product’s contribution by its proportion of sales. where V = variable cost per unit P = price per unit F = fixed costs W = percent each product is of total dollar sales i = each product © 2011 Pearson Education, Inc. publishing as Prentice Hall

33 Multiproduct Example Fixed costs = $3,000 per month Annual Forecasted
Item Price Cost Sales Units Sandwich $5.00 $3.00 9,000 Drink ,000 Baked potato ,000 Le Bistro, like most other resturants, makes more than one product and would like to know its breakeven point in dollars. Information for Le Bistro follows. Fixed costs are $3,000 per month. © 2011 Pearson Education, Inc. publishing as Prentice Hall

34 Multiproduct Example Fixed costs = $3,000 per month Annual Forecasted
Item Price Cost Sales Units Sandwich $5.00 $3.00 9,000 Drink ,000 Baked potato ,000 Sandwich $5.00 $ $45, Drinks , Baked , potato $72, Annual Weighted Selling Variable Forecasted % of Contribution Item (i) Price (P) Cost (V) (V/P) 1 - (V/P) Sales $ Sales (col 5 x col 7) With a variety of offerings, we proceed with break-even analysis just as in a single-product case, except that we weight each of the products by its proportion of total sales using Equation (S7-5) . Note: Revenue for sandwiches is $45,000 ( * 9,000 ), which is 62.1% of the total revenue of $72,500. Therefore, the contribution for sandwiches is “weighted” by The weighted contribution is .621 * .40 = In this manner, its relative contribution is properly reflected. © 2011 Pearson Education, Inc. publishing as Prentice Hall

35 Multiproduct Example ∑ 1 - x (Wi) F BEP$ = Vi Pi
= = $76,759 $3,000 x 12 .469 Fixed costs = $3,000 per month Annual Forecasted Item Price Cost Sales Units Sandwich $5.00 $3.00 9,000 Drink ,000 Baked potato ,000 Daily sales = = $246.02 $76,759 312 days Sandwich $5.00 $ $45, Drinks , Baked , potato $72, Annual Weighted Selling Variable Forecasted % of Contribution Item (i) Price (P) Cost (V) (V/P) 1 - (V/P) Sales $ Sales (col 5 x col 7) .621 x $246.02 $5.00 = 30.6  31 sandwiches per day Using this approach for each product, we find that the total weighted contribution is .47 for each dollar of sales, and the break-even point in dollars is $76,596: © 2011 Pearson Education, Inc. publishing as Prentice Hall

36 Reducing Risk with Incremental Changes
(a) Leading demand with incremental expansion Demand Expected demand New capacity (b) Capacity lags demand with incremental expansion Demand New capacity Expected demand (c) Attempts to have an average capacity with incremental expansion Demand New capacity Expected demand Demand growth is usually in small units, while capacity additions are likely to be both instantaneous and in large units. This contradiction adds to the capacity decision risk. To reduce risk, incremental changes that hedge demand forecasts may be a good option. Figure S7.6 illustrates four approaches to new capacity. Figure S7.6 © 2011 Pearson Education, Inc. publishing as Prentice Hall

37 Reducing Risk with Incremental Changes
(a) Leading demand with incremental expansion Demand Time (years) 1 2 3 New capacity Expected demand Alternative Figure S7.6 (a) leads capacity—that is, acquires capacity to stay ahead of demand, with new capacity being acquired at the beginning of period 1. This capacity handles increased demand until the beginning of period 2. At the beginning of period 2, new capacity is again acquired, allowing the organization to stay ahead of demand until the beginning of period 3. This process can be continued indefinitely into the future. Here capacity is acquired incrementally —at the beginning of period 1 and at the beginning of period 2. Figure S7.6 © 2011 Pearson Education, Inc. publishing as Prentice Hall

38 Reducing Risk with Incremental Changes
(b) Capacity lags demand with incremental expansion Demand Time (years) 1 2 3 New capacity Expected demand But managers can also elect to make a larger increase at the beginning of period 1 [ Figure S7.6 (b)]—an increase that may satisfy expected demand until the beginning of period 3. Excess capacity gives operations managers flexibility. For instance, in the hotel industry, added (extra) capacity in the form of rooms can allow a wider variety of room options and perhaps flexibility in room cleanup schedules. In manufacturing, excess capacity can be used to do more setups, shorten production runs, and drive down inventory costs. Figure S7.6 © 2011 Pearson Education, Inc. publishing as Prentice Hall

39 Reducing Risk with Incremental Changes
(c) Attempts to have an average capacity with incremental expansion Demand Time (years) 1 2 3 New capacity Expected demand Figure S7.6 (c) shows an option that lags capacity, perhaps using overtime or subcontracting to accommodate excess demand. Finally, Figure S7.6 (d) straddles demand by building capacity that is “average,” sometimes lagging demand and sometimes leading it. Both the lag and straddle option have the advantage of delaying capital expenditure. Figure S7.6 © 2011 Pearson Education, Inc. publishing as Prentice Hall

40 Expected Monetary Value (EMV) and Capacity Decisions
Determine states of nature Future demand Market favorability Analyzed using decision trees Hospital supply company Four alternatives To present a manager’s decision alternatives, we can develop decision trees using the above symbols. When constructing a decision tree, we must be sure that all alternatives and states of nature are in their correct and logical places and that we include all possible alternatives and states of nature. © 2011 Pearson Education, Inc. publishing as Prentice Hall

41 Expected Monetary Value (EMV) and Capacity Decisions
-$90,000 Market unfavorable (.6) Market favorable (.4) $100,000 Large plant Market favorable (.4) Market unfavorable (.6) $60,000 -$10,000 Medium plant Market favorable (.4) Market unfavorable (.6) $40,000 -$5,000 Small plant $0 Do nothing Getz Products Company is investigating the possibility of producing and marketing backyard storage sheds. Undertaking this project would require the construction of either a large or a small manufacturing plant. The market for the product produced—storage sheds—could be either favorable or unfavorable. Getz, of course, has the option of not developing the new product line at all. © 2011 Pearson Education, Inc. publishing as Prentice Hall

42 Expected Monetary Value (EMV) and Capacity Decisions
-$90,000 Market unfavorable (.6) Market favorable (.4) $100,000 Large plant Market favorable (.4) Market unfavorable (.6) $60,000 -$10,000 Medium plant Market favorable (.4) Market unfavorable (.6) $40,000 -$5,000 Small plant $0 Do nothing Large Plant EMV = (.4)($100,000) + (.6)(-$90,000) EMV = -$14,000 © 2011 Pearson Education, Inc. publishing as Prentice Hall

43 Expected Monetary Value (EMV) and Capacity Decisions
-$14,000 -$90,000 Market unfavorable (.6) Market favorable (.4) $100,000 Large plant $18,000 Market favorable (.4) Market unfavorable (.6) $60,000 -$10,000 Medium plant Market favorable (.4) Market unfavorable (.6) $40,000 -$5,000 Small plant $0 Do nothing $13,000 © 2011 Pearson Education, Inc. publishing as Prentice Hall


Download ppt "Capacity and Constraint Management"

Similar presentations


Ads by Google