Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tight Fourier Tails for AC0 Circuits

Similar presentations


Presentation on theme: "Tight Fourier Tails for AC0 Circuits"β€” Presentation transcript:

1 Tight Fourier Tails for AC0 Circuits
Avishay Tal (IAS) CCC ’2017

2 Bounded Depth Circuits
A C 0 (π‘š,𝑑): 𝑛 variables π‘š gates (size of the circuit) depth 𝑑 alternating gates A C 0 ≔A C 0 π‘π‘œπ‘™π‘¦ 𝑛 ,𝑂 1

3 Brief History Parity π‘₯ 1 , …, π‘₯ 𝑛 = π‘₯ 1 + π‘₯ 2 +…+ π‘₯ 𝑛 (π‘šπ‘œπ‘‘ 2)
[Ajtai’83, Furst-Saxe-Sipser’84, Yao’85]: Parity is not in AC0 [HΓ₯stad ’86]: any depth-𝑑 circuit computing parity is of size at least exp 𝑛 1/(π‘‘βˆ’1) . Result is tight: there exists a circuit of size exp 𝑛 1/(π‘‘βˆ’1) and depth 𝑑 computing Parity Challenge: Give an explicit function with better lower bounds. Really good lower bounds will imply lower bounds for NC1 & log-space.

4 Brief History [Linial-Mansour-Nisan’89]: Bounded depth circuits are well-approximated in L2 by low degree polynomials. Theorem: Let π‘“βˆˆA C 0 (π‘š,𝑑). Then, βˆƒπ‘ of deg p =𝑂 log π‘š/πœ€ 𝑑 s.t. 𝐄 π‘₯ 𝑝 π‘₯ βˆ’π‘“ π‘₯ 2 β‰€πœ€ [HΓ₯stad ’12]: any π‘“βˆˆA C 0 (π‘š,𝑑) may agree with Parity on at most exp⁑(βˆ’π‘›/ log (π‘š) π‘‘βˆ’1 ) of the inputs. [Imagaliazzo-Matthews-Paturi’12]: … 1 2 +exp⁑(βˆ’π‘›/ log (π‘š/𝑛) π‘‘βˆ’1 ) [HΓ₯stad ’12] and [IMP’12] results are tight!

5 Discrete Fourier Analysis 101
For functions 𝑓,𝑔: βˆ’1,1 𝑛 →ℝ define inner-product as 𝑓,𝑔 = 𝑬 π‘₯ [𝑓 π‘₯ ⋅𝑔(π‘₯)] The characters πœ’ 𝑆 π‘₯ = π‘–βˆˆπ‘† π‘₯ 𝑖 for π‘†βŠ†[𝑛] form an orthonormal basis. Hence, any function 𝑓: βˆ’1,1 𝑛 →ℝ has a unique expansion 𝑓(π‘₯) = π‘†βŠ†[𝑛] 𝑓 𝑆 β‹… π‘–βˆˆπ‘† π‘₯ 𝑖 called the Fourier expansion. The Fourier coefficients 𝑓 (𝑆) are real numbers given by 𝑓 𝑆 = 𝑓, πœ’ 𝑆 = 𝐄 π‘₯ 𝑓 π‘₯ β‹… π‘–βˆˆπ‘† π‘₯ 𝑖 Plancherel’s Identity: 𝐄 π‘₯ 𝑓 π‘₯ ⋅𝑔(π‘₯) = 𝑓,𝑔 = 𝑆 𝑓 𝑆 β‹… 𝑔 (𝑆) Parseval’s Identity: 𝐄 π‘₯ 𝑓 π‘₯ 2 = 𝑓,𝑓 = 𝑆 𝑓 𝑆 2 If 𝑓 is Boolean, i.e., 𝑓: βˆ’1,1 𝑛 β†’{βˆ’1,1}, then 𝑆 𝑓 𝑆 2 =1 Example: Majority MAJ(x_1, x_2, x_3) = Β½ x1 + Β½ x2 + Β½ x3 – Β½ x1x2x3

6 Discrete Fourier Analysis 101
The Fourier transform of a Boolean function 𝑓 naturally defines a distribution 𝐷 𝑓 over sets π‘†βŠ†[𝑛]: Denote by 𝐖 π‘˜ 𝑓 = 𝐏𝐫 π‘†βˆΌ 𝐷 𝑓 [|𝑆|=π‘˜] = 𝑆:|𝑆|=π‘˜ 𝑓 𝑆 2 Denote by 𝐖 β‰₯π‘˜ 𝑓 = 𝐏𝐫 π‘†βˆΌ 𝐷 𝑓 [ 𝑆 β‰₯π‘˜] = 𝑆: 𝑆 β‰₯π‘˜ 𝑓 𝑆 2 The probability to sample 𝑆 from 𝐷 𝑓 equals 𝑓 𝑆 2 .

7 Tails and Low-Degree Approximation Equivalence
Let 𝑓: βˆ’1,1 𝑛 →ℝ. The truncated Fourier expansion of 𝑓 at level π‘˜ is a degree π‘˜ polynomial defined by 𝑓 β‰€π‘˜ π‘₯ = 𝑆: 𝑆 β‰€π‘˜ 𝑓 𝑆 β‹… π‘–βˆˆπ‘† π‘₯ 𝑖 By Parseval: 𝐄 π‘₯ 𝑓 π‘₯ βˆ’ 𝑓 β‰€π‘˜ π‘₯ 2 = 𝑾 >π‘˜ [𝑓]. By Parseval: this is the best L2-approx. of 𝑓 among degree π‘˜ polys. 𝑓 has a degree-π‘˜ L2-approximation with error πœ€ iff 𝑾 >π‘˜ 𝑓 β‰€πœ€

8 𝐖 π‘˜ π‘ƒπ‘Žπ‘Ÿπ‘–π‘‘π‘¦ 𝐖 π‘˜ 𝑓

9 Comparison of Results in Fourier language
W π‘˜ 𝑓 LMN’89 exp βˆ’ π‘˜ 1/𝑑 decay Boppana’97 Our Result 1/π‘˜ decay HΓ₯stad’01 Lower Bound exp βˆ’π‘˜ decay HΓ₯stad’12 IMP’12 π‘˜ log π‘š π‘‘βˆ’1 log π‘š 𝑑 𝑛

10 Comparison of Results in Polynomial Language
If 𝑓 can be computed by a circuit with size π‘š and depth 𝑑, then 𝑓 can be πœ€-approximated in L2 by polynomials of degree: LMN’89 𝑂(log π‘š/πœ€ 𝑑 ) Boppana’97 𝑂(log π‘š π‘‘βˆ’1 /πœ€) HΓ₯stad’01 𝑂(log π‘š/πœ€ π‘‘βˆ’2 β‹… log (π‘š) β‹… log (1/πœ€) ) This Work 𝑂(log π‘š π‘‘βˆ’1 β‹… log (1/πœ€) )

11 Main Theorem A significant improvement for πœ€β‰ͺ 1 poly(π‘š) .
If 𝑓 can be computed by a circuit of size π‘š and depth 𝑑, then βˆ€π‘˜: 𝑾 β‰₯π‘˜ 𝑓 ≀ exp βˆ’π‘˜/ log (π‘š) π‘‘βˆ’1 . Alternatively, 𝑓 can be πœ€-approximated in L2 by a polynomial of degree 𝑂 log π‘š π‘‘βˆ’1 β‹… log 1/πœ€ . 𝑾 π‘˜ 𝑓 A significant improvement for πœ€β‰ͺ 1 poly(π‘š) . Tight (for any π‘šβ‰«π‘›)

12 Applications to Pseudo-randomness
F PRG A distribution 𝐷 over Β±1 𝑛 is pseudorandom for crkts of class 𝐢 if βˆ€π‘“βˆˆπΆ: 𝐄 π‘₯~𝐷 𝑓 π‘₯ β‰ˆ πœ€ 𝐄 π‘₯βˆΌπ‘ˆ [𝑓 π‘₯ ] A pseudo-random generator (PRG) for 𝐢 is a function PRG: βˆ’1,1 𝑠 β†’ βˆ’1,1 𝑛 such that PRG( π‘ˆ 𝑠 ) is pseudorandom for 𝐢.

13 Summary of Applications

14 Why should we care? Why are we not satisfied by exp βˆ’ π‘˜ 1/𝑑 decay in tails and want exp βˆ’π‘˜ decay? Motivating question: give a Fourier analytical proof that Majority cannot be approximated by AC0 circuits. (Other proofs: [Smolensky’93, O’Donnell-Wimmer’07]) π‘“βˆˆA C 0 𝐖 π‘˜ 𝑓 𝐖 π‘˜ MAJ polylog(𝑛)

15 Different Notions of Fourier Concentration
Let 𝑓 be a Boolean function and 𝑑 a parameter. TFAE: for all k: 𝐖 β‰₯π‘˜ 𝑓 ≀ 𝑒⋅ 𝑒 βˆ’π‘˜/𝑂(𝑑) for all k: 𝐄 π‘†βˆΌ 𝐷 𝑓 |𝑆| π‘˜ ≀𝑂 𝑑 π‘˜ for all p, k: 𝐏𝐫 𝜌∼ 𝑅 p ⁑ deg 𝑓 𝜌 β‰₯π‘˜ ≀𝑂 𝑝𝑑 π‘˜ . and they imply Exp. Small Fourier Tails Fourier Moments β€œSwitching Lemma” 𝑆: 𝑆 =π‘˜ | 𝑓 𝑆 | =𝑂 𝑑 π‘˜

16 Majority is not approximated by AC0
Problem: both MAJ and AC0 are concentrated on lower levels of the Fourier spectrum. Idea: Recall π‘“βˆˆπ€ 𝐂 𝟎  𝑆 =π‘˜ 𝑓 𝑆 ≀polylog 𝑛 π‘˜ .  on the k’th level, 𝑓’s Fourier mass is concentrated on only polylog 𝑛 π‘˜ coefs out of all the 𝑛 π‘˜ coefs. Since MAJ is symmetric, it spreads its Fourier weight equally within each layer: every coefficient in the k’th level is at most 1 𝑛 π‘˜ .

17 Majority is not approximated by AC0
Using Plancherel: 𝐄 π‘₯ 𝑓 π‘₯ β‹…MAJ π‘₯ = 𝑆 𝑓 𝑆 β‹… MAJ 𝑆 ≀ π‘˜=1 𝑛 𝑆 =π‘˜ 𝑓 𝑆 β‹… MAJ 𝑆 For 1β‰€π‘˜< 𝑛 0.1 : 𝑆 =π‘˜ 𝑓 𝑆 β‹… MAJ 𝑆 ≀ polylog 𝑛 π‘˜ 𝑛 π‘˜ For π‘˜β‰₯ 𝑛 0.1 : 𝑆 β‰₯ 𝑛 𝑓 𝑆 β‹… MAJ 𝑆 ≀ 𝑆β‰₯ 𝑛 𝑓 𝑆 2 β‹… 𝑆β‰₯ 𝑛 MAJ 𝑆 2 = 𝐖 β‰₯ 𝑛 𝑓 β‹… 𝐖 β‰₯ 𝑛 MAJ ≀ exp (βˆ’ 𝑛 0.1 /polylog 𝑛 ) β‰ͺ 1 𝑛  𝐄 π‘₯ 𝑓 π‘₯ β‹…MAJ π‘₯ ≀ polylog 𝑛 𝑛

18 Open Question Which distributions fool AC0? [Aaronson’10, Fefferman-Shaltiel-Umans-Viola’12] Can you find a distribution which is pseudorandom for AC0 but not pseudorandom for log-time quantum algorithms? F  an oracle separation between BQP from PH

19 Exponentially Small Fourier Tails
Definition: 𝑓 has ESFT(t) if for all π‘˜: 𝐖 β‰₯π‘˜ 𝑓 ≀ 𝑒⋅ 𝑒 βˆ’π‘˜/𝑑 Several interesting classes of functions have ESFT(t) CNFs/DNFs of width-𝑀 [HΓ₯stad’86, LMN’89] 𝑑 = 𝑂(𝑀) Formulas of size π‘š [Reichardt’11] 𝑑 = 𝑂 π‘š Read-Once Formulas [Impagliazzo-Kabanets’14] 𝑑 = 𝑂 𝑛 1/3.27 Circuits of size π‘š and depth 𝑑 𝑑 = 𝑂( log π‘š π‘‘βˆ’1 ) Functions with max-sensitivity 𝑠 [Gopalan-Servedio-T-Wigderson’16]: 𝑑 = 𝑂(𝑠)

20 Thank You!


Download ppt "Tight Fourier Tails for AC0 Circuits"

Similar presentations


Ads by Google