Download presentation
Presentation is loading. Please wait.
Published byΒαρθολομαίος Ēᾍιδης Ουζουνίδης Modified over 6 years ago
1
Data and Applications Security Developments and Directions
Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #2 Supporting Technologies August 26, 2009
2
Objective of the Unit This unit will provide an overview of the supporting technologies
3
Outline of Part I: Information Security
Operating Systems Security Network Security Designing and Evaluating Systems Web Security Other Security Technologies
4
Operating System Security
Access Control Subjects are Processes and Objects are Files Subjects have Read/Write Access to Objects E.g., Process P1 has read acces to File F1 and write access to File F2 Capabilities Processes must presses certain Capabilities / Certificates to access certain files to execute certain programs E.g., Process P1 must have capability C to read file F
5
Mandatory Security Bell and La Padula Security Policy
Subjects have clearance levels, Objects have sensitivity levels; clearance and sensitivity levels are also called security levels Unclassified < Confidential < Secret < TopSecret Compartments are also possible Compartments and Security levels form a partially ordered lattice Security Properties Simple Security Property: Subject has READ access to an object of the subject’s security level dominates that of the objects Star (*) Property: Subject has WRITE access to an object if the subject’s security level is dominated by that of the objects\
6
Covert Channel Example
Trojan horse at a higher level covertly passes data to a Trojan horse at a lower level Example: File Lock/Unlock problem Processes at Secret and Unclassified levels collude with one another When the Secret process lock a file and the Unclassified process finds the file locked, a 1 bit is passed covertly When the Secret process unlocks the file and the Unclassified process finds it unlocked, a 1 bit is passed covertly Over time the bits could contain sensitive data
7
Network Security Security across all network layers
E.g., Data Link, Transport, Session, Presentation, Application Network protocol security Ver5ification and validation of network protocols Intrusion detection and prevention Applying data mining techniques Encryption and Cryptography Access control and trust policies Other Measures Prevention from denial of service, Secure routing, - - -
8
Data Security: Access Control
Access Control policies were developed initially for file systems E.g., Read/write policies for files Access control in databases started with the work in System R and Ingres Projects Access Control rules were defined for databases, relations, tuples, attributes and elements SQL and QUEL languages were extended GRANT and REVOKE Statements Read access on EMP to User group A Where EMP.Salary < 30K and EMP.Dept <> Security Query Modification: Modify the query according to the access control rules Retrieve all employee information where salary < 30K and Dept is not Security
9
Steps to Designing a Secure System
Requirements, Informal Policy and model Formal security policy and model Security architecture Identify security critical components; these components must be trusted Design of the system Verification and Validation
10
Product Evaluation Orange Book
Trusted Computer Systems Evaluation Criteria Classes C1, C2, B1, B2, B3, A1 and beyond C1 is the lowest level and A1 the highest level of assurance Formal methods are needed for A1 systems Interpretations of the Orange book for Networks (Trusted Network Interpretation) and Databases (Trusted Database Interpretation) Several companion documents Auditing, Inference and Aggregation, etc. Many products are now evaluated using the federal Criteria
11
Security Threats to Web/E-commerce
12
Other Security Technologies
Middleware Security Insider Threat Analysis Risk Management Trust and Economics Biometrics Secure Voting Machines
13
Outline of Part II: Data Management
Concepts in database systems Types of database systems Distributed Data Management Heterogeneous database integration Federated data management
14
An Example Database System
Adapted from C. J. Date, Addison Wesley, 1990
15
Metadata Metadata describes the data in the database
Example: Database D consists of a relation EMP with attributes SS#, Name, and Salary Metadatabase stores the metadata Could be physically stored with the database Metadatabase may also store constraints and administrative information Metadata is also referred to as the schema or data dictionary
16
Functional Architecture
Data Management User Interface Manager Schema (Data Dictionary) Manager (metadata) Query Manager Security/ Integrity Manager Transaction Manager Storage Management File Manager Disk Manager
17
DBMS Design Issues Query Processing Optimization techniques
Transaction Management Techniques for concurrency control and recovery Metadata Management Techniques for querying and updating the metadatabase Security/Integrity Maintenance Techniques for processing integrity constraints and enforcing access control rules Storage management Access methods and index strategies for efficient access to the database
18
Types of Database Systems
Relational Database Systems Object Database Systems Deductive Database Systems Other Real-time, Secure, Parallel, Scientific, Temporal, Wireless, Functional, Entity-Relationship, Sensor/Stream Database Systems, etc.
19
Relational Database: Example
Relation S: S# SNAME STATUS CITY S1 Smith London S2 Jones Paris S3 Blake Paris S4 Clark London S5 Adams Athens Relation P: P# PNAME COLOR WEIGHT CITY P1 Nut Red London P2 Bolt Green Paris P3 Screw Blue Rome P4 Screw Red London P5 Cam Blue Paris P6 Cog Red London Relation SP: S# P# QTY S1 P S1 P S1 P S1 P S1 P S1 P S2 P S2 P S3 P S4 P S4 P S4 P
20
Example Class Hierarchy
ID Name Author Publisher Document Class D1 D2 Method1: Method2: Print-doc-att(ID) Print-doc(ID) Journal Subclass Book Subclass # of Chapters Volume # B1 J1
21
Example Composite Object
Document Object Section 2 Object Section 1 Object Paragraph 1 Object Paragraph 2 Object
22
Distributed Database System
Communication Network Distributed Processor 1 DBMS 1 Data- base 1 base 3 base 2 DBMS 2 DBMS 3 Processor 2 Processor 3 Site 1 Site 2 Site 3
23
Data Distribution S I T E 1 E M P 1 D E P T 1 S S # N a m e S a l a r
y D # D # D n a m e M G R 1 J o h n 2 1 1 C . S c i . J a n e 2 P a u l 3 2 3 J a m e s 4 2 3 E n g l i s h D a v i d 4 J i l l 5 2 5 M a r y 6 1 4 F r e n c h P e t e r 6 J a n e 7 2 S I T E 2 E M P 2 D E P T 2 S S # N a m e S a l a r y D # D # D n a m e M G R 9 M a t h e w 7 5 5 M a t h J o h n 7 D a v i d 8 3 P h y s i c s P a u l 8 P e t e r 9 4 2
24
Interoperability of Heterogeneous Database Systems
Database System A Database System B (Relational) (Object- Oriented) Network Transparent access to heterogeneous databases - both users and application programs; Query, Transaction processing Database System C (Legacy)
25
Different Data Models Network Node A Node B Node C Node D
Database Database Database Database Relational Model Network Model Hierarchical Model Object- Oriented Model Developments: Tools for interoperability; commercial products Challenges: Global data model
26
Federated Database Management
Database System A Database System B Federation F1 Cooperating database systems yet maintaining some degree of autonomy Federation F2 Database System C
27
Federated Data and Policy Management
Data/Policy for Federation Export Export Data/Policy Data/Policy Export Data/Policy Component Component Data/Policy for Data/Policy for Agency A Agency C Component Data/Policy for Agency B
28
Outline of Part I: Information Management
Information Management Framework Information Management Overview Some Information Management Technologies Knowledge Management
29
What is Information Management?
Information management essentially analyzes the data and makes sense out of the data Several technologies have to work together for effective information management Data Warehousing: Extracting relevant data and putting this data into a repository for analysis Data Mining: Extracting information from the data previously unknown Multimedia: managing different media including text, images, video and audio Web: managing the databases and libraries on the web
30
Data Warehouse Users Query the Warehouse Data Warehouse:
Data correlating Employees With Medical Benefits and Projects Could be any DBMS; Usually based on the relational data model Oracle DBMS for Employees Sybase DBMS for Projects Informix DBMS for Medical
31
Data Mining Information Harvesting Knowledge Mining Data Mining
Knowledge Discovery in Databases Data Archaeology Data Dredging Database Mining Knowledge Extraction Data Pattern Processing Information Harvesting Siftware The process of discovering meaningful new correlations, patterns, and trends by sifting through large amounts of data, often previously unknown, using pattern recognition technologies and statistical and mathematical techniques (Thuraisingham 1998)
32
Multimedia Information Management
Broadcast News Editor (BNE) Video Source Broadcast News Navigator (BNN) Scene Change Detection Correlation Story GIST Theme Broadcast Detection Frame Classifier Commercial Detection Key Frame Selection Imagery Silence Detection Story Segmentation Multimedia Database Management System Audio Speaker Change Detection Closed Caption Text Token Detection Video and Metadata Closed Caption Preprocess Named Entity Tagging Segregate Video Streams Analyze and Store Video and Metadata Web-based Search/Browse by Program, Person, Location, ...
33
Image Processing: Example: Change Detection:
Trained Neural Network to predict “new” pixel from “old” pixel Neural Networks good for multidimensional continuous data Multiple nets gives range of “expected values” Identified pixels where actual value substantially outside range of expected values Anomaly if three or more bands (of seven) out of range Identified groups of anomalous pixels Started with two known anomalies (ship, circle) -- third (parking lot) detected by algorithm. Neural net takes 7 bands of old as input, 7 bands of new as output. Multiple nets trained, gives range of predictions. Width of range gives measure of how “confident” the prediction is. Measure ratio of actual-predicted to range, if high is anomaly High defined as 4 standard deviations above average ratio for that band Anomalous pixel if 3 or more anomalous bands Anomalous region if 6 or more bad pixels in 3x3 block.
34
Semantic Web Adapted from Tim Berners Lee’s description of the Semantic Web XML, XML Schemas Rules/Query Logic, Proof and Trust TRUST Other Services RDF, Ontologies URI, UNICODE P R I V A C Y Some Challenges: Security and Privacy cut across all layers
35
Knowledge Management Components
Components of Management: Components, Cycle and Technologies Cycle: Technologies: Components: Knowledge, Creation Expert systems Strategies Sharing, Measurement Collaboration Processes And Improvement Training None of these things were endorsed by military acquisitions, but all have gradually started happening out of necessity and user requirements. Metrics Web
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.