Presentation is loading. Please wait.

Presentation is loading. Please wait.

Arbeitstreffen "Hadronen und Kerne", Pommersfelden

Similar presentations


Presentation on theme: "Arbeitstreffen "Hadronen und Kerne", Pommersfelden"— Presentation transcript:

1 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
DEAR Status of KLOE DANE B. Valeriani Institut für Experimentelle Kernphysik-Universität Karlsruhe Arbeitstreffen "Hadronen und Kerne", Pommersfelden

2 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
KLOE & DANE DANE and KLOE have been conceived with the primary goal of studying CP and CPT violation in the neutral kaon system Two different methods are used to investigate these symmetries :  Double Ratio fixed target experiments Quantum Interferometry, unique a  factory*, since kaon pairs are collinear and monochromatic * DANE facility: e+ - e- collider working at the  mass s = 1.02 GeV Design philosophy:  L(single bunch) = 5x1030 cm-2s-1 ( LVEPP-2M) high collision frequency (up to 120 bunches)  two independent beam lines to avoid beam-beam interaction Maximum achieved Luminosity L ~ 3  1031 cm-2s-1 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

3 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
KLOE Int. Lum. (pb-1) 20 100 1000 2000 now CP and CPT studies Rare and not rare Ks decays (, ee, , ), Kaon form factor, Hadronic cross-section measurement at 1% accuracy radiative decays, BR(Ks  +-)/BR(Ks  00), BR of semileptonic Ks decays, upper limit on BR(Ks  000)  10-5, dN/dE (Ks  +-) Arbeitstreffen "Hadronen und Kerne", Pommersfelden

4 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
KLOE detector Superconducting Coil B=0.6 T Be beam pipe (0.5 mm thickness) permanent Quad’s instrumentation Pb / Scintillating Fibers Iron Yoke Cylindrical Drift Chamber 4 m , 3.3 m length 90% Helium, 10% Isobutane all stereo wires Electromagnetic Calorimeter Pb / Scintillating Fibers Endcap - Barrel - Modules Arbeitstreffen "Hadronen und Kerne", Pommersfelden

5 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
KLOE performances: EmC & DC P/P = 0.4% (for 90o tracks) XY  150 m, Z  2 mm DC E/E = 5.7% / E(GeV) T = 54 ps / E(GeV)  50 ps (bunch length contribution subtracted) EmC Arbeitstreffen "Hadronen und Kerne", Pommersfelden

6 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Ks decays studies with 2000 data BR(Ks  +-)/BR(Ks  00) N(KL  00) / N(KS  00) N(KL  +) / N(KS  +) R= N(KL  00) / N(KL  +) N(KS  00) / N(KS  +) @ fixed target @ KLOE KL interacting in EMC (KLCRASH) The KS is tagged by a KL in the EmC. The measurement of BR(Ks  +-)/BR(Ks  00) is already competitive: PDG 2000: Ratio =  [1 ± 1.2  10-2 (stat) ± 0.6 10-2 (syst)] KLOE 2000: Ratio =  [1 ± 0.35  10-2 (stat) ± 1.5  10-2 (syst)] preliminary systematics under study Arbeitstreffen "Hadronen und Kerne", Pommersfelden

7 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Ks decays studies with 2000 data Ks  e decay KS  e and KS  +-MC FIT Data: 2000  11.5 pb-1 TOT = (21.80.3)% N(KS pen)=283 19 events p- e+ n KL interacting in EMC (KLCRASH) Emiss-Pmiss PDG2000 (CMD2) : BR(KS e ) = [7.2 ± 1.2]  10-4 KLOE preliminary result: BR(KS e ) = [7.47 ± 0.51(stat)]  10-4 (systematics under evaluation) Arbeitstreffen "Hadronen und Kerne", Pommersfelden

8 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
 radiative decays studies with 2000 data Scalar sector: BR(  f0  00) = [7.9  0.2 (stat)]  10-5 BR(  a0  0) = [5.8  0.5 (stat)]  (  ) BR(  a0  0) = [6.7  0.9 (stat)]  (  0) Assuming BR(  f0)  3  BR(  f0  00) and BR(  a0)  BR(  a0  0) : BR(  f0) / BR(  a0) = 4.1  0.4 (stat) Pseudoscalar sector: BR(  ’) / BR(  ) = [5.3  0.6]  10-3 M’ = [958.0  0.6] MeV/c2 BR(  ’) = [6.8  0.8]  10-5 (PDG2000: BR= [6.7  1.5]  10-5 ) mix = [40+1.7–1.5]o (flavour basis) = [ –1.5]o (singlet-octet basis) In both cases the analysis is going on to evaluate systematic errors Arbeitstreffen "Hadronen und Kerne", Pommersfelden

9 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
  0 ~0.3M events 3 contributions to Dalitz plot E0 – mo GeV Preliminary  r ,0 p 0,  f  p +p -p 0 (direct) e+e-  wp 0 in the fit the mass and width of the , the M(,0) and the direct decay contribution are left free (E+ - E-)/3 GeV A1 (10-2) f1 (deg) M(r+,-) M(r0) G DM(+,-) KLOE       0.3 (*) PDG 11 (CMD-2)  0.9 (**)  (*) CPT test at < 5 x 10-4 (**) mixed charges (t decay and e+e-) average: M(r0) - M(r+,-) = 0.4 0.8 Efficiency (X,Y) from Montecarlo: fine tuning in progress to reduce systematic effects on M(r0) (now at 2 MeV level) Arbeitstreffen "Hadronen und Kerne", Pommersfelden

10 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Measurement of (e+e  s<1 GeV KLOE measures hadronic cross-section as a function of the  center of mass energy M2 in the fixed energy environment of DANE by using the RADIATIVE RETURN METHOD. A hard photon radiated in the initial state (Initial State Radiation, ISR) lowers the available energy, allowing to exploit the full energy range 4m2 < M2 < 1 GeV2, without any energy scan. M2 = M2 - 2M E Why are we interested in measuring (e+e  s<1 GeV? A precise measurement of (e+e  +) as a function of M2 in this energy range is relevant for the theoretical estimation of the hadronical contribution both to the muon anomalous magnetic moment a and to the fine structure constant at the Z mass (M2Z). Arbeitstreffen "Hadronen und Kerne", Pommersfelden

11 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
(ee  ) & a The reduction of the present error on the hadronical contribution to a becomes extremely important with the new results of the BNL g-2 experiment aexp Czarnecki,Marciano 2000 Czarnecki, Krause,Marciano 1998 (g-2)/2 = ( ± )  10-10 E821, hep-ex/ amexp - amtheor,SM = 2.5  2.9  difference aQED = ( ± )  10-10 aweak = ( ± )  10-10 = ( ± )  10-10 = ( ± )  10-10 (g-2)/2 = aQED + ahad + aweak (+ anew physics ?) atheor ahad Davier, Höcker 1999,  decays Jegerlehner 2001, without  decays,new CMD and BES data Reducing ahad allows to isolate possible new physics contributions! Arbeitstreffen "Hadronen und Kerne", Pommersfelden

12 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
KLOE contribution to the measurement a can be expressed in terms of (ee  hadrons) via the dispersion integral: Since low energy contributions are enhanced in the dispersion integral, ca. 77% of ahad comes in the energy region 2m < M < 1.4 GeV. 61% of ahad is covered by the  resonance: 0.28 GeV < M < 0.81 GeV An accuracy of 1% in (ee  hadrons) up to 1.4 GeV results in a =  7  10-10 The same accuracy in the measurement of (ee  hadrons) up to 3.1 GeV would result in a =  1.5  10-10 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

13 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
The    final state Three processes contribute to the    final state:  Initial State Radiation (ISR)*  Final State Radiation (FSR)    f0   The relative contribution of the three processes depends strongly on the photon polar angle and on the two pions invariant mass value:  ISR contribution is peaked at small photon polar angle  FSR and  direct decay contributions are mainly concentrated in the high M region (M2 > 0.8 GeV2) *S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

14 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
ee   selection Event Display DIDONE  events are selected by asking for two tracks connected to a vertex in the IR Some background channels are selected together with the signal:  ee  ee   ee     ee    0 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

15 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Fiducial volume definition Two fiducial volumes are currently studied: small angle: <21o  >169o highest cross section; small background from ; small contribution from FSR; no photon tagging required large angle: 60o<<120o large background from , especially at low M2; photon detected in the EmC The pions must be central (55o-125o) to cut down the background (ee ,  ) Arbeitstreffen "Hadronen und Kerne", Pommersfelden

16 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Signal selection:1 Bhabha events are rejected with a likelihood function based on the TOF and the shape of the energy deposit in the EmC: eff. on pions   * 0  ee 450MeV< Ptr<500MeV eff. on electrons log(Relative Likelihood) Track momentum   and radiative bhabhas are used as control samples  different likelihood functions are defined for each track momentum range (50 MeV bin) Arbeitstreffen "Hadronen und Kerne", Pommersfelden

17 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Signal selection:2 25°< qg < 155°, 50°< qp <130° Mtrk is defined by the following relation: After the likelihood cut the signal peak is clearly visible in the Mtrk variable The signal is selected by cutting 10 MeV around the pion mass Before Likelihood ( Rad. Bhabhas ) After Likelihood mmg p+p-p0 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

18 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
ee   cross-section Integrated luminosity  = acctrgsel  the acceptance eacc is evaluated from MC (large angle; small angle)  the global selection efficiency esel is evaluated from DATA+MC  the trigger efficiency etrig is evaluated from DATA  the Luminosity is measured using the Bhabha scattering at large angles Arbeitstreffen "Hadronen und Kerne", Pommersfelden

19 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Pion form factor The pion form factor is extracted from ISR cross-section using the relation: H=radiation function in Born approximation (no radiative corrections) Experimental points have been compared with Kühn-Santamaria parametrization* for F (fixed parameters, no fit has been performed so far) |F(M2)|2 = d(, M2) d M2 H(M2 ,cosmin,cosmax) |F(M2)|2  large angle  small angle Ldt = 16.5 pb-1 M *Z. Phys. C48 (1990) 445 Arbeitstreffen "Hadronen und Kerne", Pommersfelden

20 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Pion polar angle asymmetry FSR parametrization in the MC has been checked by looking at the pion pair asymmetry in the polar angle distribution small angle large angle Asymmetry (%) Asymmetry (%)  DATA  MC  DATA  MC  A(i)= N(,i)  N(,i) N(,i)  N(,i)  Arbeitstreffen "Hadronen und Kerne", Pommersfelden

21 Arbeitstreffen "Hadronen und Kerne", Pommersfelden 24-28.9.2001
Conclusion  KLOE has collected ~25pb-1 by the end of year 2000  Preliminary studies show the good performances of the detector  Competitive results have already been achieved on the analysis of KS decays (BR(KS  +-)/BR(KS  00), KS semileptonic decays) and of  radiative decays (BR(  S), -’ mixing)  KLOE is expected to collect 200 pb-1 by the end of 2001  With these statistics a measurement of (e+e  s<1 GeV at 1% level can be performed  This result would play an important role in the reduction of the present error on the hadronical contribution to a  First results obtained from the analysis of the 2000 statistics (16.5 pb-1) look promising  In parallel a theoretical work is going on (Kühn and collaborators) in order to evaluate the radiative corrections to the process to the NLO (hep-ph/ ) Arbeitstreffen "Hadronen und Kerne", Pommersfelden


Download ppt "Arbeitstreffen "Hadronen und Kerne", Pommersfelden"

Similar presentations


Ads by Google