Download presentation
Presentation is loading. Please wait.
1
F. Van Bambeke & P.M. Tulkens
GLYCOPEPTIDE ANTIBIOTICS from Old Mississipi mud … … to new derivatives: a critical appraisal F. Van Bambeke & P.M. Tulkens Pharmacologie cellulaire et moléculaire Université catholique de Louvain – Brussels - Belgium Presented at the 5th European Congress of Chemotherapy, Rhodes, Greece, October 2003
2
Glycopeptide story: from natural to semi-synthetic derivatives
~ 1950 : discovery of vancomycin in Mississipi mud ~ 1985 : large clinical use in USA Gram(+) infections and digestive tract decontamination Problem: toxicity of vancomycin due to impurities better purification procedures ~ 1980 : discovery of teicoplanin, as a natural GP with improved PK largely used in Europe
3
Glycopeptide story: from natural to semi-synthetic derivatives
~ 1990 : Launching of large scale research program for finding GP with optimized properties hemi-synthetic compounds Malabarba and Nicas Med Res Rev. (1997) 17:69-137; Curr Med Chem. (2001) 8:1759-7 vancomycin teicoplanin oritavancin dalbavancin phase II / III (1999) (1996) (2003)
4
Peptidoglycan synthesis
reticulation cell wall D-ala cytosol precursor synthesis
5
Glycopeptide mechanism of action
binding to D-Ala-D-ala prevents the reticulation of peptidoglycan precursors
6
But resistance came in ...
7
Resistance in enterococci
large clinical use in USA started in ~ 1985 Bonten et al, Lancet ID (2001) 1:
8
Resistance in enterococci
glycopeptide binding to depsipeptide D-Lac, D-Ser P. Courvalin et al’s work
9
Resistance in enterococci
from susceptible … … to resistant 1 hydrogen bound is missing ! Arthur et al, Trends Microbiol (1996) 4:
10
Resistance in enterococci
glycopeptide binding to depsipeptide D-Lac, D-Ser
11
Resistance in staphylococci (GISA)
MIC AMP VAN GEN RIF LVX TET SMX Q-D LZD 64 8 128 2048 0.125 0.5 2 AB
12
Resistance in staphylococci (GISA)
tickened Cell wall multiplication of the target ! Hiramatsu Lancet ID (2001) 1: Cui et al J Clin Microbiol (2003) 41:5-14
13
Resistance in staphylococci (GRSA)
MIC VAN TEC 32 4 AB
14
Glycopeptides: what can we improve ?
parameter vanco - teico ideal glycopeptide spectrum Gram (+) & MRSA but VRE - GISA Gram (+) & MRSA, GISA, VRE quickly, conc. dependent bactericidal t ½ diffusibility (CNS) side effects AUC/MIC & Cmax/MIC PD static or slowly bactericidal PK t ½ short for vanco PK/PD high doses to reach appropriate AUC/MIC & Cmax/MIC safety (red-man syndrome) oto-& nephrotoxicity
15
Glycopeptide updated mechanism of action
dimerization and / or membrane anchoring activity
16
Glycopeptide updated mechanism of action in VRE
efficient binding still possible !
17
Glycopeptides: how can we improve ?
3 2
18
Glycopeptides: how can we improve ?
3 2 binding to D-Ala-D-Ala
19
Glycopeptides: how can we improve ?
3 2 dimerization binding to D-Ala-D-Ala
20
Glycopeptides: how can we improve ?
membrane anchoring, transglycosylase inhibition O N H C l 3 2 dimerization binding to D-Ala-D-Ala
21
Molecules in clinical development: DESIGN
22
From vancomycin to oritavancin
H C l 3 2
23
From vancomycin to oritavancin
H C l 3 2 epi-vancosamine O H
24
From vancomycin to oritavancin
H O H O 4‑epi-vancosamine self-association capacity O O H O O C H H N 3 2 O C l O H H C 3 O O O H 2 N C 3 H O C l O O O H H N N N N N H H H H N O O N H C H O 3 C O N H 2 H O O C O H LY264626 H O O H
25
From vancomycin to oritavancin
l lipophilic side chain activity including against resistant enterococci H O H O O O O H O C H H N 3 O C l O H H C 3 O O O H 2 N C 3 H O C l O O O H H N N N N N H H H H N O O N H C H 3 C O N H O 2 H O O C O H H O O H
26
From teicoplanin to dalbavancin
H N H O H O O C l O H O O O O H O H O H O O C l O N H A c O O H H N H O N N 2 N N N H H H H N O O H O O C H O O O H O H H O O O H O O H O H O H
27
From teicoplanin to dalbavancin
H N H O H O O O H O O O O H O H O H O O C l O N H A c O O H H N HCH O N N 3 N N N H H H H N O C l O H O O C H O O O H O H H O O O H O O H O H O H
28
From teicoplanin to dalbavancin
H N removal of N-acetylglucosamine activity (against resistant enterococci) H O H O O O H O O O HO C l O O O H H N HCH O N N 3 N N N H H H H N O C l O H O O C H O O O H O H H O O O H O O H A40926 O H O H
29
From teicoplanin to dalbavancin
H N H O H O O O H O O O HO activity C l O O O H H N HCH O N N 3 N N N H H H N H- H N O C l O O C H O O O H O H H O O O H O O H O H O O H H
30
Molecules in clinical development: IN VITRO DATA microbiology pharmacodynamics
31
Most of data from Candiani, et al. (1999) JAC 44: 179-92
Spectrum of activity strain resist. vanco orita teico dalba enterococci susc. VanA VanB 0.25-4 >128 8-128 64->128 0.13-8 0.5->128 0.02-2 S. aureus Methi-S Methi-R VISA VRSA 0.13-1 0.5-4 8 32 0.13-4 1-8 0.25 8-32 4 < 0.06-1 2 S. epiderm. 1-4 0.25-1 1-16 S. pyogenes S. pneumo Peni-S Peni-R 0.25-2 Most of data from Candiani, et al. (1999) JAC 44:
32
Pharmacodynamic properties of oritavancin
conc. dependent, bactericidal effect static effect Allen & Nicas, FEMS Microbiology Rev (2003) 26:
33
PK/PD properties of oritavancin in a model of S
PK/PD properties of oritavancin in a model of S.aureus infected macrophages control ORI VAN 100 200 300 Cellular accumulation VAN ORI 107 2.5 µg/ml 25 µg/ml 0.25 µg/ml 10 µg/ml 50 µg/ml 105 CFU / mg prot 103 101 5 10 15 20 25 Time (h) Seral et al AAC (2003) 47 :
34
Molecules in clinical development: IN VIVO DATA pharmacokinetics pharmacodynamics
35
Pharmacokinetic properties
parameter Vanco (15 mg/kg) Orita (3 mg/kg) Teico (6 mg/kg) Dalba peak (mg/L) 20-50 31 43 300 through (mg/L) 5-12 (24 h) 1.7 < 5 40 (168 h) protein binding 10-55 % 90 % 90 % 98 % terminal t½ (h) 4-8 360 83-168 257 h once-a-day administration once-a-week administration Intermune, Inc, data on file Steiert & Schmitz, Curr.Opin.Investig.Drugs (2002) 3:
36
PK/PD profile PK/PD breakpoints : parameter Vanco Orita Teico Dalba
(15 mg/kg) bid Orita (3 mg/kg) qd Teico (6 mg/kg) Dalba AUC / MIC = 125 total free 4 2 1 0.1 0.4 185 Cmax / MIC = 10 10 5 3 0.3 30 0.6 MRSA VISA VRE 0.06-1 2 0.5->128 0.13-8 8-32 64->128 0.13-4 1-8 0.5-4 8 >128 MIC of target bugs :
37
preliminary data from Phase I and Phase II
Safety profile preclinical studies preliminary data from Phase I and Phase II oritavancin and dalbavancin well tolerated but more patients are needed …
38
Molecules in clinical development: IN VIVO DATA clinical studies
39
followed by oral cephalexin
Clinical experience complicated skin and skin structure infection caused by Gram (+) including MRSA (phase II/III; double blind, randomized) 517 pts Vancomycin 15 mg/kg bid 3-7days followed by oral cephalexin 10-14 days Oritavancin mg/kg qd 3-7 days SUCCESS : bacteriological clinical with MRSA 76 % 80 % 74 % 76 % = Wasilewski et al 41st ICAAC (2001)
40
Vancomycin, ceftriaxone, cefazolin or clindamycin
Clinical experience complicated skin and skin structure infection caused by Gram (+) including MRSA (phase II; controlled, randomized) 42 pts Vancomycin, ceftriaxone, cefazolin or clindamycin for 7-21 days Dalbavancin 15 mg/kg day 1 + 7.5 mg/kg day 8 SUCCESS : bacteriological clinical 64 % 76 % 73 % 94 % Selzer et al 13th ECCMID (2003)
41
In which indications could they be useful ?
which organisms ? MRSA certainly YES VRE oritavancin only VISA limited activity, … but synergy for dalba + -lactam S. pneumo other alternatives which organs ? severe skin and soft tissues septicemia / deep organs endocarditis (combination ?) CNS infections (penetration ?) clinical experience still lacking
42
Research is still active …
TD-6424
43
Research is still active …
TD-6424 in vitro data: MIC MRSA 1 µg/ml MIC VISA 4 µg/ml antibacterial activity: bactericidal inhibitor of lipid synthesis activity in animal models endocarditis subcutaneous infections Phase I studies t ½ ~ 8 h once-a-day
44
We are looking forward these new antibiotics …
… but how strong will they be ?
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.