Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cavity Ring-Down Spectroscopy

Similar presentations


Presentation on theme: "Cavity Ring-Down Spectroscopy"β€” Presentation transcript:

1 Cavity Ring-Down Spectroscopy
PHYS Modern Atomic Physics Presentation by: Ruqayyah Askar April 25, 2016

2 Outline Ring-down with a continuous wave laser
Ring-down with a pulse train Applications and conclusion Experimental setup in our Lab. Future work

3 Continuous Wave in a Tunable Cavity: Model
Consider: A monochromatic cw laser Assume: Distance between mirrors change Linearly 𝐿 𝑑 = 𝐿 π‘œ +𝑣𝑑 From: Pulse train in a cavity by Xiwen Zhang (2012)

4 Electric field inside cavity:
𝐸 𝑖𝑛 𝑧,𝑑 = 𝑛=0 ∞ 𝑇 π‘Ÿ 2𝑛 𝐸 π‘œ 𝑒 𝑖(π‘˜π‘§ βˆ’πœ”π‘‘) 𝑒 𝑖 πœ™ 𝑛 Where T: transmission coefficient, r: reflection coefficient, 𝐸 π‘œ : slow varying amplitude, and the round-trip phase is: Where v: velocity of mirror’s movement n: number of round-trips Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

5 Electric field inside cavity:
Assume the cavity is in resonance with the incident filed at t=0: π‘˜ 𝐿 π‘œ =𝑁 πœ‹ , 𝑁: π‘Žπ‘› π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ Assume round-trip time << than cavity decay time, then: 𝑑 π‘Ÿπ‘œπ‘’π‘›π‘‘βˆ’π‘‘π‘Ÿπ‘–π‘ = 2𝐿 𝑣 𝑑= 2 𝐿 π‘œ 𝑐 𝑙 , 𝑙: π‘Žπ‘› π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ The round-trip phase becomes: πœ™ 𝑛 =π‘˜ 2𝑛 𝐿 π‘œ +𝑣𝑑 βˆ’ 2𝐿 π‘œ 𝑐 𝑣 𝑛 2 =π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛(2𝑙 βˆ’π‘›) Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

6 Intensity of the filed inside cavity:
𝐼 𝑖𝑛 𝑑 ∝ 𝑛=0 ∞ π‘Ÿ 2𝑛 𝑒 𝑖 πœ™ 𝑛 2 , πœ™ 𝑛 = π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛(2𝑙 βˆ’π‘›) If cavity scan speed is fast enough such that: πœ™ 𝑛 >> 1 at 𝑛=𝑙 π‘˜π‘£ 2𝐿 π‘œ 𝑐 ≫ 𝑣≫ 𝑐 2π‘˜πΏ π‘œ Then the intensity is: 𝐼 𝑖𝑛 𝑑 ∝ π‘Ÿ 4𝑙 𝑛=0 ∞ 𝑒π‘₯𝑝 π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛(2𝑙 βˆ’π‘›) ∝ 𝑅 2𝑙 =exp⁑( ln (𝑅 2𝑙 )) =exp⁑{ 2𝑙( ln 1βˆ’ 1βˆ’π‘… } β‰ˆexp[βˆ’2 1βˆ’π‘… 𝑙] β‰ˆ exp[βˆ’2 1βˆ’π‘… ct/2L] = exp(βˆ’t/ 𝑑 π‘π‘Žπ‘£ ) (1-R) << 1 Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

7 Intensity of the filed inside cavity:
If cavity scan speed is slow : 𝑣 ~ 𝑐 2π‘˜πΏ π‘œ 𝐼 𝑖𝑛 𝑑 ∝ 𝑛=0 ∞ π‘Ÿ 2𝑛 𝑒π‘₯𝑝 π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 [ 𝑙 2 βˆ’ (π‘›βˆ’π‘™) 2 ] 2 = 𝑛 β€² =βˆ’π‘™ ∞ π‘Ÿ 2( 𝑛 β€² +𝑙) 𝑒π‘₯𝑝 π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 [ 𝑙 2 βˆ’ 𝑛 β€² 2 ] 2 = π‘Ÿ 2𝑙 𝑒π‘₯𝑝 π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑙 𝑛 β€² =βˆ’1 ∞ π‘Ÿ 2 𝑛 β€² 𝑒π‘₯𝑝 βˆ’π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛 β€² = 𝑅 2𝑙 𝑛 β€² =βˆ’1 ∞ π‘Ÿ 2 𝑛 β€² 𝑒π‘₯𝑝 βˆ’π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛 β€² = 𝑅 2𝑙 𝑛 β€²β€² =1 𝑙 π‘Ÿ βˆ’2 𝑛 β€²β€² 𝑒π‘₯𝑝 βˆ’π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛 β€²β€² 𝑛 β€² =0 ∞ π‘Ÿ 2 𝑛 β€² 𝑒π‘₯𝑝 βˆ’π‘–π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑛 β€² Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

8 Experiment: measured cavity decay for various scan speeds and analyzed results
Probe laser: 791 nm Mirror spacing: L0 ~ 1 mm, could be varied by a piezoelectric transducer. π‘˜π‘£ 2𝐿 π‘œ 𝑐 𝑙 π‘š 2 β‰ˆ2πœ‹π‘š π‘Žπ‘›π‘‘ 𝑑 π‘š = 2𝐿 π‘œ 𝑐 𝑙 π‘š Ξ€12 = 𝑑 2 βˆ’ 𝑑 1 β‰ˆ 2 βˆ’ 𝐿 π‘œ 𝑐 Ξ» 𝑣 1/2 Time interval between first and second minima: Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

9 Experiment: measured cavity decay for various scan speeds and analyzed results
Probe laser: 791 nm Mirror spacing: L0 ~ 1 mm, could be varied by a piezoelectric transducer. Cavity finesse: F = 1.03 Γ— 106 Cavity decay time: 𝑑 π‘π‘Žπ‘£ = 1.14 ΞΌs Ξ€12 ~ 170 ns Mirror velocity: 𝑣 = 32 ΞΌm/s Ξ€12 ~ 380 ns Mirror velocity: 𝑣 = 6.4 ΞΌm/s Kyungwon An, C. Yang, R. Dasari, and M. Feld, Optics Lett. 20, (1995)

10 Pulse train in a tunable cavity: Model
From: Pulse train in a cavity by Xiwen Zhang (2012)

11 Pulse train in a tunable cavity: Model
Interference condition: Resonance condition: Size of the resonant cavity: Resonant wavelength: From: Pulse train in a cavity by Xiwen Zhang (2012)

12 Intensity of field inside cavity
A similar approach yields: 𝐼 𝑖𝑛 𝑙=𝑣 𝑝 π‘œ + 𝑝 β€² ∝ 𝑙 β€² =1 𝑙 𝑅 βˆ’ 𝑐 2𝐿 π‘œ 𝑇 𝑙 β€² 𝑒π‘₯𝑝 βˆ’π‘–π‘˜π‘£ 𝑐 2𝐿 π‘œ 𝑇 2 𝑙 β€² Time interval between two adjacent minima: 𝑇 π‘š,π‘šβˆ’1 = 𝑑 π‘š βˆ’ 𝑑 π‘šβˆ’1 β‰ˆ π‘š βˆ’ π‘šβˆ’ 𝐿 π‘œ 𝑐 Ξ» 𝑣 , 𝑑 = 𝑙𝑇 From: Pulse train in a cavity by Xiwen Zhang (2012)

13 A Numerical result 𝑇 π‘š,π‘šβˆ’1 = 𝑑 π‘š βˆ’ 𝑑 π‘šβˆ’1 β‰ˆ π‘š βˆ’ π‘šβˆ’1 2𝐿 π‘œ 𝑐 Ξ» 𝑣 1 2 ,
𝑇 π‘š,π‘šβˆ’1 = 𝑑 π‘š βˆ’ 𝑑 π‘šβˆ’1 β‰ˆ π‘š βˆ’ π‘šβˆ’ 𝐿 π‘œ 𝑐 Ξ» 𝑣 , From: Pulse train in a cavity by Xiwen Zhang (2012)

14 Applications Conclusion Cavity ring-down with a cw probe laser:
Measuring the relative velocity of the mirrors Determining the linewidth of the probe laser Cavity ring-down with a pulse train: Measurement of group velocity dispersion Determining the cavity loss factor Conclusion Fast scan of the cavity results in the usual decay signal. Slow scan of the cavity shows oscillations due to interference between the incident wave along the decay signal. Similar oscillations should be seen when we use a pulse train.

15 Experimental setup in our Lab.

16 Experimental results showing oscillations due to acoustic noise:
The fitting is not accurate enough due to such oscillations Fields build up inside cavity, Then a trigger signal turns off the AOM Fitting to exponential function to get the decay constant

17 Decay constants(Β΅s) vs. detector’s position(mm)
The Baseline is not stable. Different sets of data were collected and showed similar results.

18 Cavity Ring-Down with a Pulse Train
Current challenges to consider if we want to apply the slow scan technique: A narrower linewidth than the one we are currently using. Suppressing the acoustic noise from the environment. Using lighter cavity mirrors and piezoelectric transducer to avoid vibrations. J. Wojtas, J. Mikolajczyk, and Z. Bielecki, SensorsΒ 13(6), (2013)


Download ppt "Cavity Ring-Down Spectroscopy"

Similar presentations


Ads by Google